二課堂9定積分計算_第1頁
二課堂9定積分計算_第2頁
二課堂9定積分計算_第3頁
二課堂9定積分計算_第4頁
二課堂9定積分計算_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第八節(jié)定積分的計算定積分的換元法設單值函數(shù)滿足:φ(t

)

φ

(t

)則φ(α)

=

a

,

φ(

β)

=

b;在[α

,β]或[β

,α]上j(t

)?

C1[a

,b],換元公式定理1注11)

換元要換限,變量不代回.3)換元公式雙向使用:a=

b

f

(

x)d

x或配元φ(t

) d

φ(t

)φ(t

)

φ

(t

)2)x

=

j(t

),x

:

a

fi

b,

t

:

α

fi配元不換限φ(t

)

φ

(t

)φ(t

)

φ

(t

)β,

下限對應下限.令x

=φ(t

)定積分的分部積分法定理2

設u(

x),

v(

x)在[a,

b]上導數(shù)連續(xù),則ba分部積分公式注2a-af

(

x)dx0,偶倍奇零=0af

(

x)d

x

,2注3設f

(x)在實軸上連續(xù),且是以T為周期的周期函數(shù),則對任意實數(shù)a成立Ta+Taf

(

x)dxf

(

x)dx

=

0一、絕對值積分例1122-2min{ ,

x

}dx.x求解112,

x

>

1

x

x2

,

x

1,

x

}

=x

min{是偶函數(shù),x,

x

}dx1min{220原式=221102=

2dx1xx dx

+

223+

2ln

2.=解0p21

-

sin

2xdx.求p20sin

x

-

cos

x

dx原式=ppp40=

4

(cos

x

-

sin

x)dx

+

2(sin

x

-

cos

x)dx=

2 2

-

2.例210(2x2

+1)

x2

+1二、定積分換元

1

dt02sec2

t(2

tan

t

+1)sectp6令x

=tant=====cost02sin2

t

+cos2t=p6102d

(sint)1+

sin

tdt

=p60p=

arctan(sint)

|

62=

arctan

1例3

3

dx2x

,

x<

01

+

e1,

x

?

0

1

+

x1計算0

f

(

x

-1)dx.例4

設f

(

x)

=

1令u=x-1解:原式=====-1

f

(u)duu

=100-1du

+

1

du1+

e

1+

u1=

-ln(e-u

+1)

|0

+ln(1+

u)

|1-1

0=

-ln

2

+ln(e

+1)

+ln

2

=

ln(e

+1)

1ln

x

d

1-

x

e2三、定積分分部積分ln

xe2(1-

x)2

dx

=

ee11e2e2dxx(1-

x)ln

x

|

-e=2|11-

x2eex1-

e

1-

x-

-

ln1-

e2=1-

ln=e1+

e

e

+1例5

e2110x2e-t

dt

.計算

xf

(

x)

dx

,

其中f

(

x)

=

例61010f

(

x)

dx2xf

(

x)

dx

=解:212121002

11-

x2

f

¢(x)

dx=

x f

(x)

|01x22=

0

-

10|144

1

42xe-x

dx

=

e-x4=

1

(e-1

-1).40π4π2nn2n

-12n

-

2+I

n=

2n

-1In-1,

I0

=2n-1sec

x

dx

,證明降階遞推公式設I

=例70nsec2n-2p4證:

I

=0-(2n

-

2)

4

sec2n-2

x

tan2

x

dx=

sec2n-2

x

tan

x

|4px

d

(tan

x)psec

x

dx0402n2n-2n-1sec

x

dx

+(2n

-

2)=

2

-(2n

-

2)p40pn=

2n-1

-(2n

-

2)I

+(2n

-

2)I+2n-1In-11 2n

-12n

-

2n-1=

2n

-4000pp4sec

x

dx

=I

=四、含參量的變限積分例80設f

(

x)連續(xù),

F

(

x)

=

x

f

(

x

+

t

)

dt,

計算F

¢(

x).xxf

(u)

du2

x0令u

=x+tf

(x

+

t)

dt

====解:F

(x)=F

(x)

=

2

f

(2x)

-

f

(x)當被積函數(shù)中出現(xiàn)求導變量時,或利用代數(shù)方法將求導變量提出積分號;或利用換元積分法將求導變量放到積分的上,下限.例9)2022sin4

xxxfi

0+x

-

t

dt,arctan ln

1+(

x

-

t

)

(其中x

>

0,

計算極限lim

f

(x)

.設f

(x)=解:令x2

-t

=u,0arctan

u

ln(1+

u)

2uduf

(x)

=

-xx0u

arctan

u

ln(1+

u)du=

2402xlim

f

(x)sin4

xxu

arctan

u

ln(1+

u)du=

limxfi0+xfi

0+型

004x3=

lim

2x

arctan

x

ln(1+

x)xfi

0+=

1210202f

(

x)dx.(

x

-

1)x-

y

+2

ye

dy,求設f

(x)=解3

0原式=1

1

f

(x)d

(x

-1)311030

313=

1dx(

x

-

1)

ee dy]0

-[

(

x

-

1)3

-

x2

+2

xx-

y2

+2

y=

-102162d[(

x

-

1)

](

x

-

1)

e2

-(

x-1)

+1令(x

-1)2

=u-01ue

due6-u1=

6

(e

-

2).例0-

2(x5

+

4cos5

x)cos3

x

dx

.p2p計算cos8

x

dx-

2-

2p2pp2p解:原式=cos

x

dx208=

0

+

8x5

cos3

x

dx

+

4p8

6

4

2

2=

8

7

5

3

1

p32=

35

p五、利用被積函數(shù)的奇偶性證明或計算例11-2計算定積分2

x

ln(1

+

ex

)

dx例122x)(-dt

)-2-t令x=-t解法一:

-2

x

ln(1

+

e

)

dx

====2

-

t

ln(1

+

e22

t-2[t

-

t

ln(e

+1)]

dt=t222-2-2t

ln(e

+1)

dtt dt

-=t

dt2-2212原式=83=22

x-2-2x

ln(1+

ex

)

dx-

x

x

2

+

e

2

dx=

x

ln

e

2

+

ln

e解法二:222x-2-2-

x

x

x

ln

e

2

+

e

2

dx

=

xdx

+

202=x

dx

+

0=

83xx

lnt1111+

t證法一:

f

( )

=uudt

====12

du11+

1x

-

ln

u

-1令u

=tx=1duu(u

+1)ln

u11+

t

t(t

+1)

1

x

lnt

lnt+f

(x)

+

f

( )

=xt

dt

=12x

ln

tdt

=

1

ln2

x六、積分等式的證明例13

設f

(

x)

=

x

ln

t

dt

,

證明f

(

x)

+

f

(

1

)

=

1

ln2

x.1

1

+

t

x

22x

21

1f

(

)

-

ln

x證法二:令g(x)=f

(x)+xxxln

1x21+

11+

x則g¢(x)

=

ln

x

+-1

-

ln

x

1

=

0于是g(x)為一常數(shù),又g(1)

=

0,

故g(x)

0.解p0

sin

x

+

cos

xsin

x求

2

dx.psin

x由I

=

2pdx,0

sin

x

+

cos

xcos

xdx,

設J

=

2,20p20

sin

x

+

cos

xpdx

=則I

+J

=0

sin

x

+

cos

xp

sin

x

-

cos

xI

-

J

=

2dx

=

-20sin

x

+

cos

xp

d

(cos

x

+

sin

x)=

0.2故得2I

=p,4即I

=p.例144

000dx

.a

a1+sin

2xf

(a

-

x)

dx

,f

(x)

dx

=p

1

-

sin

2x并利用此式計算證明設f

(x)在[0,a](a

>0)上連續(xù),例15a0證:0af

(t)(-dt)令t

=a-xf

(a

-

x)

dx

====a0=af

(x)

dx0f

(t)

dt

=dx4

01+sin

2xp

1

-

sin

2x解:dx0

2

2

=p41+sin

p

-

2x

1-

sin

p

-

2x

4

0=p

1-

cos

2xdx1+cos

2x

2cos

x402dx

=p

2sin2

x0=p0p4

(sec2

x

-1)

dx

=

(tan

x

-

x)

|

44=1-

pdt

=

0.1 ln

tt

tf

(t

+

)x1x例16

f

(x)在(0,+¥

)上連續(xù),試證明x

>0,有dt,1

lntt

tx1xf

(t

+)證法一:令g(x)=111=

0,-1x2xlnx則

g¢(

x)

=

f

(x

+

1

)

ln

x

-

f

(

+

x)x

x

xg(x)為一常數(shù),g(x)

=

g(1)=

0.duu1ln

111xxu2-1f

(

+

u)uu====令t

=1dtt

t1

lntx1xf

(t

+

)證法二:

g(

x)

=u

u1

lnuf

(x1xu+

u)

du

=

-g(x)=

-\

g

(x)

=

0.七、積分不等式的證明試證明02psin(x2

)

dx

>

0證明:原式tsin

t2

0====令t

=x2

12p

dtdttt=

2

01

2p

sin

tdt

+

2

p1

p

sin

tdudt

+=ppu

+p00dtsinttsintt00dt

-=ppsin

u

+p2

sint

t

+p)

dtsint

(120=pt

(t

+p

)

t

+p

-

t

sin

t

?

0t

+p

-

t

>

002p\

sin(x2

)

dx

>

0(令u

=t

-p

)例17f

(

x)dxf

(

x)dxab

ba?

(b

-

a)2

.證明設f

(x)在區(qū)間[a,b]上連續(xù),且f

(x)>0.證

作輔助函數(shù)f

(t

)dtf

(t

)dtxaxa-

(

x

-

a)2

,F

(

x)

=11f

(

x)f

(t

)dtf

(t

)xaxa-

2(

x

-

a)dt

+

F

¢(

x)

=

f

(

x)=xaxaxa2dt,dt

-f

(

x)f

(t

)dt+f

(t

)f

(

x)例18(+

-

2)dt

?

0f

(t

)

f

(

x)f

(

x)

f

(t

)xa即F

¢(x)=\f

(

x)

+

f

(t

)

?

2f

(t

)

f

(

x)

f

(

x)

>

0,F

(x)單調(diào)增加.又

F

(a)=0,\

F

(b)

?

F

(a)

=

0,f

(

x)dxf

(

x)dxbaba?

(b

-

a)2

.即e

sin

tdt

>

0xsin

tx+2p證明F

(x)=例192p0sin

te

sin

tdt證:F

(x)==pp2psin

t0sin

te

sin

tdte

sin

tdt

+(在第二個積分中,令u

=t

-p

)00sin

te

(-sinu)

due

sintdt

+=-sin

up

p0-1)dt=e-sin

t

sint(e2sin

tp當0

<

t

<

p時,

sin

t

>

0,

e2sin

t

-1

>

0,

\

F

(x)

>

0.10310f

(

x)

dx

.f

(x)

dx

?2¢0

<f

(x)£1,證明設f

(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導,且f

(0)=0,例20030xxf

(t)

dt

-

2證:令F

(x)=f

(t)dt,則F

(0)=0,30f

(t)

dt2

f

(x)x-

f

(

x)F

(x)

=¢20-

f

(

x)f

(t)

dt=

f

(x)

2x20(

x),xf

(t)

dt

-

f令G(x)=2則G(0)=0,G

(x)

=

2

f

(x)

-

2

f

(x)

f

(x)

=

2

f

(x)[1-

f

(x)]由f

(0)

=

0及0

<

f

(x)

£1,

得f

(x)

>

f

(0)

=

0,有G

(x)

?

0,

G(x)

?,F

(x)

?

0,F

(x)

?,G(x)

?

G(0)

=

0,F

(x)

?

F

(0)

=

0,故當0

x

£1時,有F

(x)?0.特別有F

(1)?0,10312

0f

(

x)

dx

?

0

.f

(

x)

dx

-此即2

[11-2+

ln2

(1

-

x)]dx.sin

x解2x8

+

11-21ln(1

-

x)dx原式=0

+=1200-21x)dxln(1

-ln(1

-

x)dx

-=

3

ln

3

+

ln

1

.2

2

2備例1

求102f

(x)

dx.¢-(

x-1),f

(0)=0,計算備例設2

f

(x)

=

ex0f

¢(x)

dx-

f

(0)

=解:

f

(

x)

=

f

(x)dxex=0-(

x-1)2無法積出¢101010xf

(x)

dxf

(x)

dx

=

xf

(

x)

|

-dxxe10-(

x-1)2=

f

(1)

-仍無法解出1010f

(

x)

d

(

x

-1)f

(x)

dx

=(x)

dx1010¢-

(x

-1)

f=

(x

-1)

f

(x)

|dx10-(

x-1)2(x

-1)e=

0

-02=

1

e-(

x-1)2

|12=

1

(1-

e-1

)baba12¢-

b)

f

(

x)dx(

x

-

a)(

x[

f

(a)

+

f

(b)]+b

-

a2f

(

x)dx

=證明:ba(

x

-

a)(

x(

)ba-

b)

f

"(

x)dx

=-

b)df'

x(

x

-

a)(

x-

baba(

)(

-

a

-

b)dxf'

x

2

x(

)

-

a)(

x

-

b)=

f' x

(

x=

-ba(2

x

-

a

-

b

df

x)

(

)

(

)(+baba-

a

-

b)f

(x)

2dx=

-

f

x

2

x(

)(

)

(

)(

)ba-

b

-

f

b

b

-

a

+=

f

a

af

(x)

2dx備例3

f

¢(

x)

[a,

b]連續(xù),證明baba122(

x

-

a)(

x

-

b)

f

¢(

x)dxf

(b)]

+[

f

(a)

+b

-

af

(

x)dx

=\021/

2

20x

f

(

)dx.2¢

xf

(2x)dx=1/32,計算備例4

設f

(x)連續(xù),

且已知f

(1)

=1/

8,

f

(1)

=1/

4,202202¢

xx

f

(

)dx

=

2

x

df

(

)2

2¢

x解:¢

x¢

x202

2xf

(

)dx2-42=

2x

f

(

)

|020xxdf

(

)2¢=

8

f

(1)

-8xxf

(

)dx2202=

2

-8xf

(

)

|0

+8(令x

=2u)120f

(2u)

4du2=

2

-16

f

(1)

+82=110

p4

2<dx

<p

1

6

4

-

x2

-

x3備例5

證明證:當0

<x

<1時,111<<4

-

x2

4

-

x2

-

x3

4

-

2x2關(guān)于x從0

到1

積分dxdx

<101014

-

x2

-

x3

1

4

-

x2|0

=x

1

2arcsin6p

=2

4

22111010p<xdx

=

arcsin

|

=4

-

2x231-1f

(x)

dx

1

.f

¢(x)£1,證明備例6

設f

(-1)

=

f

(1)

=

0,

f

(-1)

=

f

(1)

=

0,¢1-1-11-1f

(x)dx

=

xf

(x)

|1

-

xf

(x)dx證:112-1f

¢(x)dx2=

0

-¢=

--11-122

+

1x

f

(x)

|12-12

1

1

1x2

f

¢(x)dx

=

0

+

x2

f

¢(x)dxx

f

(x)

dx12121-1-1f

(x)

dx

=121-1x2

f

¢(x)

dx¢

£x

dx£1-121213=備例7+¢2000

0

02!(

x

-

x

)f

(

x

)f

(

x)

=

f

(

x

)

+

f

(

x

)(

x

-

x

)

+[稱此式為帶積分形式余項的泰勒公式]設函數(shù)f

(x)在x0

點的某個鄰域內(nèi)有n

+1階連續(xù)導數(shù)試證明x1n!

n!x0f

(

n)

(

x

)+

0

(

x

-

x )n

+0f

(

n+1)

(t

)(

x

-

t

)ndt證明:n

(n)x

xx0x0(

x

-

t

)

df

(t

)f

(t

)(

x

-

t

)

dt

=(

n+1)

nxx0x0(-1)dtf

(n)(t

)]x

-=

[(

x

-

t

)nf

(n)(t

)

n(

x

-

t

)n-1xx0df

(t

)(

x

-

t

)f

(n)(

x

)

+

n=

-(

x

-

x

)n(n-1

)n-100[]x(n)x000n-1

(n-1

)-

t

)

f

(t

)(

x

)

+

n(

x=

-(

x

-

x

)n

fxx0(-1)dt-

nf

(n-1

)

(t

)(n

-

1)(

x

-

t

)n-2f

(

n)

(

x

)

-

n(

x

-

x

)n-1

f

(

n-1)

(

x

)0

0

0n=

-(

x

-

x0

)xx0f

(

n-1)

(t

)(

x

-

t

)n-2

dt+

n(n

-

1)n

(

n)

n-1

(

n-1)=

-(

x

-

x0

)

f

(

x0

)

-

n(

x

-

x0

)

f

(

x0

)n-2

(

n-2)-

n(n

-

1)(

x

-

x0

)

f

(

x0

)

-xx0f

'

(t

)dt+¢20000

02!(

x

-

x

)f

(

x

)-

x

)

+\

f

(

x)

=

f

(

x

)

+

f

(

x

)(

xxn!1n!x0f

(

n)

(

x

)+

0

(

x

-

x )n

+0f

(

n+1)

(t

)(

x

-

t

)ndt-

n(n

-

1)(n

-

2)

2(

x

-

x

)

f

'

(

x

)

+

n(n

-

1)

20

0=

-(x

-

x

)n

f

(n)

(x

)

-

n(x

-

x

)n-1

f(n-1)

(x

)0

0

0

0-

n(n

-1)(x

-

x

)n-2

f

(n-2)

(x

)

-0

0-

n!(x

-

x

)

f

'

(x

)

+

n!

f

(x)

-

n!

f

(x

)0

0

0¢2000002!(

x

-

x

)

+f

(

x

)-

x

)

+(

x

)(x\

f

(

x)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論