人教A版高中數(shù)學(xué)選修2-1知識點總結(jié)_第1頁
人教A版高中數(shù)學(xué)選修2-1知識點總結(jié)_第2頁
人教A版高中數(shù)學(xué)選修2-1知識點總結(jié)_第3頁
人教A版高中數(shù)學(xué)選修2-1知識點總結(jié)_第4頁
人教A版高中數(shù)學(xué)選修2-1知識點總結(jié)_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

精選文本精選文本..精選文本.高二數(shù)學(xué)選修2-1知識點第一章常用邏輯用語1、命題:用語言、符號或式子表達的,可以判斷真假的陳述句.真命題:判斷為真的語句.假命題:判斷為假的語句.2、“若,則”形式的命題中的稱為命題的條件,稱為命題的結(jié)論.3、對于兩個命題,如果一個命題的條件和結(jié)論分別是另一個命題的結(jié)論和條件,則這兩個命題稱為互逆命題.其中一個命題稱為原命題,另一個稱為原命題的逆命題.若原命題為“若,則”,它的逆命題為“若,則”.4、對于兩個命題,如果一個命題的條件和結(jié)論恰好是另一個命題的條件的否定和結(jié)論的否定,則這兩個命題稱為互否命題.中一個命題稱為原命題,另一個稱為原命題的否命題.若原命題為“若,則”,則它的否命題為“若,則”.5、對于兩個命題,如果一個命題的條件和結(jié)論恰好是另一個命題的結(jié)論的否定和條件的否定,則這兩個命題稱為互為逆否命題.其中一個命題稱為原命題,另一個稱為原命題的逆否命題.若原命題為“若,則”,則它的否命題為“若,則”.6、四種命題的真假性:原命題逆命題否命題逆否命題真真真真真假假真假真真真假假假假

四種命題的真假性之間的關(guān)系:兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.7、若,則是的充分條件,是的必要條件.若,則是的充要條件(充分必要條件).8、用聯(lián)結(jié)詞“且”把命題和命題聯(lián)結(jié)起來,得到一個新命題,記作.當(dāng)、都是真命題時,是真命題;當(dāng)、兩個命題中有一個命題是假命題時,是假命題.用聯(lián)結(jié)詞“或”把命題和命題聯(lián)結(jié)起來,得到一個新命題,記作.當(dāng)、兩個命題中有一個命題是真命題時,是真命題;當(dāng)、兩個命題都是假命題時,是假命題.對一個命題全盤否定,得到一個新命題,記作.若是真命題,則必是假命題;若是假命題,則必是真命題.9、短語“對所有的”、“對任意一個”在邏輯中通常稱為全稱量詞,用“”表示.精選文本精選文本..精選文本.含有全稱量詞的命題稱為全稱命題.全稱命題“對中任意一個,有成立”,記作“,”.短語“存在一個”、“至少有一個”在邏輯中通常稱為存在量詞,用“”表示.含有存在量詞的命題稱為特稱命題.特稱命題“存在中的一個,使成立”,記作“,”.10、全稱命題:,,它的否定:,.全稱命題的否定是特稱命題.第二章圓錐曲線與方程11、平面內(nèi)與兩個定點,的距離之和等于常數(shù)(大于)的點的軌跡稱為橢圓.這兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距.12、橢圓的幾何性質(zhì):焦點的位置焦點在軸上焦點在軸上圖形標(biāo)準方程范圍且且頂點、、、、軸長短軸的長長軸的長焦點、、焦距對稱性關(guān)于軸、軸、原點對稱離心率準線方程13、設(shè)是橢圓上任一點,點到對應(yīng)準線的距離為,點到對應(yīng)準線的距離為,則.14、平面內(nèi)與兩個定點,的距離之差的絕對值等于常數(shù)(小于)的點的軌跡稱為雙曲線.這兩個定點稱為雙曲線的焦點,兩焦點的距離稱為雙曲線的焦距.精選文本精選文本..精選文本.15、雙曲線的幾何性質(zhì):焦點的位置焦點在軸上焦點在軸上圖形標(biāo)準方程范圍或,或,頂點、、軸長虛軸的長實軸的長焦點、、焦距對稱性關(guān)于軸、軸對稱,關(guān)于原點中心對稱離心率準線方程漸近線方程16、實軸和虛軸等長的雙曲線稱為等軸雙曲線.17、設(shè)是雙曲線上任一點,點到對應(yīng)準線的距離為,點到對應(yīng)準線的距離為,則.18、平面內(nèi)與一個定點和一條定直線的距離相等的點的軌跡稱為拋物線.定點稱為拋物線的焦點,定直線稱為拋物線的準線.19、過拋物線的焦點作垂直于對稱軸且交拋物線于、兩點的線段,稱為拋物線的“通徑”,即.20、焦半徑公式:若點在拋物線上,焦點為,則;若點在拋物線上,焦點為,則;若點在拋物線上,焦點為,則;若點在拋物線上,焦點為,則.精選文本精選文本..精選文本.21、拋物線的幾何性質(zhì):標(biāo)準方程圖形頂點對稱軸軸軸焦點準線方程離心率范圍第三章空間向量與立體幾何22、空間向量的概念:在空間,具有大小和方向的量稱為空間向量.向量可用一條有向線段來表示.有向線段的長度表示向量的大小,箭頭所指的方向表示向量的方向.向量的大小稱為向量的模(或長度),記作.模(或長度)為的向量稱為零向量;模為的向量稱為單位向量.與向量長度相等且方向相反的向量稱為的相反向量,記作.方向相同且模相等的向量稱為相等向量.23、空間向量的加法和減法:精選文本精選文本..精選文本.求兩個向量和的運算稱為向量的加法,它遵循平行四邊形法則.即:在空間以同一點為起點的兩個已知向量、為鄰邊作平行四邊形,則以起點的對角線就是與的和,這種求向量和的方法,稱為向量加法的平行四邊形法則.求兩個向量差的運算稱為向量的減法,它遵循三角形法則.即:在空間任取一點,作,,則.24、實數(shù)與空間向量的乘積是一個向量,稱為向量的數(shù)乘運算.當(dāng)時,與方向相同;當(dāng)時,與方向相反;當(dāng)時,為零向量,記為.的長度是的長度的倍.25、設(shè),為實數(shù),,是空間任意兩個向量,則數(shù)乘運算滿足分配律及結(jié)合律.分配律:;結(jié)合律:.26、如果表示空間的有向線段所在的直線互相平行或重合,則這些向量稱為共線向量或平行向量,并規(guī)定零向量與任何向量都共線.27、向量共線的充要條件:對于空間任意兩個向量,,的充要條件是存在實數(shù),使.28、平行于同一個平面的向量稱為共面向量.29、向量共面定理:空間一點位于平面內(nèi)的充要條件是存在有序?qū)崝?shù)對,,使;或?qū)臻g任一定點,有;或若四點,,,共面,則.30、已知兩個非零向量和,在空間任取一點,作,,則稱為向量,的夾角,記作.兩個向量夾角的取值范圍是:.31、對于兩個非零向量和,若,則向量,互相垂直,記作.精選文本精選文本..精選文本.32、已知兩個非零向量和,則稱為,的數(shù)量積,記作.即.零向量與任何向量的數(shù)量積為.33、等于的長度與在的方向上的投影的乘積.34、若,為非零向量,為單位向量,則有;;,,;;.35、向量數(shù)乘積的運算律:;;.36、若,,是空間三個兩兩垂直的向量,則對空間任一向量,存在有序?qū)崝?shù)組,使得,稱,,為向量在,,上的分量.37、空間向量基本定理:若三個向量,,不共面,則對空間任一向量,存在實數(shù)組,使得.38、若三個向量,,不共面,則所有空間向量組成的集合是.這個集合可看作是由向量,,生成的,稱為空間的一個基底,,,稱為基向量.空間任意三個不共面的向量都可以構(gòu)成空間的一個基底.39、設(shè),,為有公共起點的三個兩兩垂直的單位向量(稱它們?yōu)閱挝徽换祝?,,的公共起點為原點,分別以,,的方向為軸,軸,軸的正方向建立空間直角坐標(biāo)系.則對于空間任意一個向量,一定可以把它平移,使它的起點與原點重合,得到向量.存在有序?qū)崝?shù)組,使得.把,,稱作向量在單位正交基底精選文本精選文本..精選文本.,,下的坐標(biāo),記作.此時,向量的坐標(biāo)是點在空間直角坐標(biāo)系中的坐標(biāo).40、設(shè),,則....若、為非零向量,則.若,則...,,則.41、在空間中,取一定點作為基點,那么空間中任意一點的位置可以用向量來表示.向量稱為點的位置向量.42、空間中任意一條直線的位置可以由上一個定點以及一個定方向確定.點是直線上一點,向量表示直線的方向向量,則對于直線上的任意一點,有,這樣點和向量不僅可以確定直線的位置,還可以具體表示出直線上的任意一點.43、空間中平面的位置可以由內(nèi)的兩條相交直線來確定.設(shè)這兩條相交直線相交于點,它們的方向向量分別為,.為平面上任意一點,存在有序?qū)崝?shù)對,使得,這樣點與向量,就確定了平面的位置.44、直線垂直,取直線的方向向量,則向量稱為平面的法向量.45、若空間不重合兩條直線,的方向向量分別為,,則,.精選文本精選文本..精選文本.46、若直線的方向向量為,平面的法向量為,且,則,.47、若空間不重合的兩個平面,的法向量分別為,,則,.48、設(shè)異面直線,的夾角為,方向向量為,,其夾角為,則有.49、設(shè)直線的方向向量為,平面的法向量為,與所成的角為,與的夾角為,則有.50、設(shè),是二面角的兩個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論