版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若、、,且,則下列不等式中一定成立的是()A. B. C. D.2.設(shè)的三個內(nèi)角成等差數(shù)列,其外接圓半徑為2,且有,則三角形的面積為()A. B. C.或 D.或3.若函數(shù)的最小正周期為2,則()A.1 B.2 C. D.4.若實數(shù)x,y滿足條件,則目標函數(shù)z=2x-y的最小值()A. B.-1 C.0 D.25.已知等差數(shù)列的公差,前項和為,則對正整數(shù),下列四個結(jié)論中:(1)成等差數(shù)列,也可能成等比數(shù)列;(2)成等差數(shù)列,但不可能成等比數(shù)列;(3)可能成等比數(shù)列,但不可能成等差數(shù)列;(4)不可能成等比數(shù)列,也不叫能成等差數(shù)列.正確的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)6.已知等差數(shù)列中,若,則()A.-21 B.-15 C.-12 D.-177.在中,若,則()A. B. C. D.8.設(shè)長方體的長、寬、高分別為2,1,1,其頂點都在同一個球面上,則該球的表面積為()A. B. C. D.9.函數(shù)在上的圖像大致為()A. B.C. D.10.已知a>0,x,y滿足約束條件,若z=2x+y的最小值為1,則a=A. B. C.1 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.等差數(shù)列前9項的和等于前4項的和.若,則.12.等差數(shù)列,的前項和分別為,,且,則______.13.已知,則與的夾角等于___________.14.已知,且關(guān)于的方程有實數(shù)根,則與的夾角的取值范圍是______.15.已知圓錐如圖所示,底面半徑為,母線長為,則此圓錐的外接球的表面積為___.16.已知單位向量與的夾角為,且,向量與的夾角為,則=.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.同時拋擲兩枚骰子,并記下二者向上的點數(shù),求:二者點數(shù)相同的概率;兩數(shù)之積為奇數(shù)的概率;二者的數(shù)字之和不超過5的概率.18.已知數(shù)列滿足.證明數(shù)列為等差數(shù)列;求數(shù)列的通項公式.19.在中,內(nèi)角的對邊分別為,且.(1)求角;(2)若,,求的值.20.某校從高一年級學(xué)生中隨機抽取60名學(xué)生,將期中考試的物理成績(均為整數(shù))分成六段:,,,…,后得到如圖頻率分布直方圖.(1)根據(jù)頻率分布直方圖,估計眾數(shù)和中位數(shù);(2)用分層抽樣的方法從的學(xué)生中抽取一個容量為5的樣本,從這五人中任選兩人參加補考,求這兩人的分數(shù)至少一人落在的概率.21.已知不共線的向量,,,.(1)求與的夾角的余弦值;(2)求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
對,利用分析法證明;對,不式等兩邊同時乘以一個正數(shù),不等式的方向不變,乘以0再根據(jù)不等式是否取等進行考慮;對,考慮的情況;對,利用同向不等式的可乘性.【詳解】對,,因為大小無法確定,故不一定成立;對,當時,才能成立,故也不一定成立;對,當時不成立,故也不一定成立;對,,故一定成立.故選:D.【點睛】本題考查不等式性質(zhì)的運用,考查不等式在特殊情況下能否成立的問題,考查思維的嚴謹性.2、C【解析】
的三個內(nèi)角成等差數(shù)列,可得角A、C的關(guān)系,將已知條件中角C消去,利用三角函數(shù)和差角公式展開即可求出角A的值,再由三角形面積公式即可求得三角形面積.【詳解】的三個內(nèi)角成等差數(shù)列,則,解得,所以,所以,整理得,則或,因為,解得或.①當時,;②當時,,故選C.【點睛】本題考查了三角形內(nèi)角和定理、等差數(shù)列性質(zhì)、三角函數(shù)和差角公式、三角函數(shù)輔助角公式,綜合性較強,屬于中檔題;解題中主要是通過消元構(gòu)造關(guān)于角A的三角方程,其中利用三角函數(shù)和差角公式和輔助角公式對式子進行化解是解題的關(guān)鍵.3、C【解析】
根據(jù)可求得結(jié)果.【詳解】由題意知:,解得:本題正確選項:【點睛】本題考查余弦型函數(shù)最小正周期的求解問題,屬于基礎(chǔ)題.4、A【解析】
線性規(guī)劃問題,首先畫出可行域,再令z=0,畫出目標函數(shù),上下平移得到z的最值。【詳解】可行域如圖所示,當目標函數(shù)平移到A點時z取最小值,故選A【點睛】線性規(guī)劃中線性的目標函數(shù)問題,首先畫出可行域,再令z=0,畫出目標函數(shù),上下平移得到z的最值。5、D【解析】試題分析:根據(jù)等差數(shù)列的性質(zhì),,,,因此(1)錯誤,(2)正確,由上顯然有,,,,故(3)錯誤,(4)正確.即填(2)(4).考點:等差數(shù)列的前項和,等差數(shù)列與等比數(shù)列的定義.6、A【解析】
根據(jù)等差數(shù)列的前n項和公式得:,故選A.7、A【解析】
由已知利用余弦定理即可解得的值.【詳解】解:,,,由余弦定理可得:,解得:,故選:A.【點睛】本題主要考查余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.8、B【解析】
先求出長方體的對角線的長度,即得外接球的直徑,再求球的表面積得解.【詳解】由題得長方體外接球的直徑.故選:B【點睛】本題主要考查長方體的外接球的表面積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.9、A【解析】
利用函數(shù)的奇偶性和函數(shù)圖像上的特殊點,對選項進行排除,由此得出正確選項.【詳解】由于,所以函數(shù)為奇函數(shù),圖像關(guān)于原點對稱,排除C選項.由于,所以排除D選項.由于,所以排除B選項.故選:A.【點睛】本小題主要考查函數(shù)圖像的識別,考查函數(shù)的奇偶性、特殊點,屬于基礎(chǔ)題.10、B【解析】
畫出不等式組表示的平面區(qū)域如圖所示:當目標函數(shù)z=2x+y表示的直線經(jīng)過點A時,取得最小值,而點A的坐標為(1,),所以,解得,故選B.【考點定位】本小題考查線性規(guī)劃的基礎(chǔ)知識,難度不大,線性規(guī)劃知識在高考中一般以小題的形式出現(xiàn),是高考的重點內(nèi)容之一,幾乎年年必考.二、填空題:本大題共6小題,每小題5分,共30分。11、10【解析】
根據(jù)等差數(shù)列的前n項和公式可得,結(jié)合等差數(shù)列的性質(zhì)即可求得k的值.【詳解】因為,且所以由等差數(shù)列性質(zhì)可知因為所以則根據(jù)等差數(shù)列性質(zhì)可知可得【點睛】本題考查了等差數(shù)列的前n項和公式,等差數(shù)列性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.12、【解析】
取,代入計算得到答案.【詳解】,當時故答案為【點睛】本題考查了前項和和通項的關(guān)系,取是解題的關(guān)鍵.13、【解析】
利用再結(jié)合已知條件即可求解【詳解】由,即,故答案為:【點睛】本題考查向量的夾角計算公式,在考題中應(yīng)用廣泛,屬于中檔題14、【解析】
先由得出,再根據(jù)即可求出與的夾角的取值范圍.【詳解】因為關(guān)于的方程有實數(shù)根,所以,即,設(shè)與的夾角為,所以,因為,所以,即與的夾角的取值范圍是【點睛】本題主要考查平面向量的夾角公式的應(yīng)用等,屬基礎(chǔ)題.15、【解析】
根據(jù)圓錐的底面和外接球的截面性質(zhì)可得外接球的球心在上,再根據(jù)勾股定理可得求的半徑.【詳解】由圓錐的底面和外接球的截面性質(zhì)可得外接球的球心在上,設(shè)球心為,球的半徑為,則,圓,因為,所以,所以,,則有.解得,則.【點睛】本題主要考查了幾何體的外接球,關(guān)鍵是會找到球心求出半徑,通常結(jié)合勾股定理求.屬于難題.16、【解析】試題分析:因為所以考點:向量數(shù)量積及夾角三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】
把兩個骰子分別記為紅色和黑色,則問題中含有基本事件個數(shù),記事件A表示“二者點數(shù)相同”,利用列舉法求出事件A中包含6個基本事件,由此能求出二者點數(shù)相同的概率.記事件B表示“兩數(shù)之積為奇數(shù)”,利用列舉法求出事件B中含有9個基本事件,由此能求出兩數(shù)之積為奇數(shù)的概率.記事件C表示“二者的數(shù)字之和不超過5”,利用列舉法求出事件C中包含的基本事件有10個,由此能求出二者的數(shù)字之和不超過5的概率.【詳解】解:把兩個骰子分別記為紅色和黑色,則問題中含有基本事件個數(shù),記事件A表示“二者點數(shù)相同”,則事件A中包含6個基本事件,分別為:,,,,,,二者點數(shù)相同的概率.記事件B表示“兩數(shù)之積為奇數(shù)”,則事件B中含有9個基本事件,分別為:,,,,,,,,,兩數(shù)之積為奇數(shù)的概率.記事件C表示“二者的數(shù)字之和不超過5”,由事件C中包含的基本事件有10個,分別為:,,,,,,,,,,二者的數(shù)字之和不超過5的概率.【點睛】本題考查概率的求法,考查古典概型、列舉法等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.18、(1)見解析;(2)【解析】
(1)已知遞推關(guān)系取倒數(shù),利用等差數(shù)列的定義,即可證明.(2)由(1)可知數(shù)列為等差數(shù)列,確定數(shù)列的通項公式,即可求出數(shù)列的通項公式.【詳解】證明:,且有,,又,,即,且,是首項為1,公差為的等差數(shù)列.解:由知,即,所以.【點睛】本題考查數(shù)列遞推關(guān)系、等差數(shù)列的判斷方法,考查了運用取倒數(shù)法求數(shù)列的通項公式,考查了推理能力和計算能力,屬于中檔題.19、(1)(2),【解析】
(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【詳解】(1)由題意知,由正弦定理可得,因為,則,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,其中解答中熟記三角形的正弦、余弦定理,準確計算是解答的掛念,著重考查了推理與計算能力,屬于基礎(chǔ)題.20、(1)眾數(shù)為75,中位數(shù)為73.33;(2).【解析】
(1)由頻率分布直方圖能求出a=0.1.由此能求出眾數(shù)和中位數(shù);(2)用分層抽樣的方法從[40,60)的學(xué)生中抽取一個容量為5的樣本,從這五人中任選兩人參加補考,基本事件總數(shù),這兩人的分數(shù)至少一人落在[50,60)包含的基本事件個數(shù),由此能求出這兩人的分數(shù)至少一人落在[50,60)的概率.【詳解】(1)由頻率分布直方圖得:,
解得,
所以眾數(shù)為:,的頻率為,
的頻率為,
中位數(shù)為:.(2)用分層抽樣的方法從的學(xué)生中抽取一個容量為5的樣本,
的頻率為0.1,的頻率為0.15,
中抽到人,中抽取人,從這五人中任選兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 服裝行業(yè)面料設(shè)計師培訓(xùn)心得
- 急診搶救科護士的工作總結(jié)
- 造紙行業(yè)工程師工作總結(jié)
- 農(nóng)業(yè)行業(yè)銷售工作總結(jié)
- 紡織服裝行業(yè)營業(yè)員工作總結(jié)
- 科研行業(yè)前臺工作總結(jié)
- 服裝行業(yè)人才招聘實例總結(jié)
- 藝術(shù)行業(yè)行政后勤工作總結(jié)
- 《管教兒女的智慧》課件
- 《心力衰竭護理》課件
- 工程竣工驗收(消防查驗)報告
- 農(nóng)業(yè)經(jīng)理人職業(yè)技能大賽考試題及答案
- GB/T 44679-2024叉車禁用與報廢技術(shù)規(guī)范
- 滬教版八年級化學(xué)(上冊)期末檢測卷及答案
- 造口傷口工作總結(jié)
- 示教機械手控制系統(tǒng)設(shè)計
- 氧化鋁生產(chǎn)工藝教學(xué)(拜耳法)
- 選礦學(xué)基礎(chǔ)PPT課件
- 安利食品經(jīng)銷商合同協(xié)議范本模板
- 空冷器技術(shù)參數(shù)
- C++面向?qū)ο笳n程設(shè)計學(xué)生信息管理系統(tǒng)
評論
0/150
提交評論