![2022-2023學年貴州黔東南州三校聯(lián)考數(shù)學高一下期末質量跟蹤監(jiān)視模擬試題含解析_第1頁](http://file4.renrendoc.com/view/bd1429c369c6053676bf86e52fc97252/bd1429c369c6053676bf86e52fc972521.gif)
![2022-2023學年貴州黔東南州三校聯(lián)考數(shù)學高一下期末質量跟蹤監(jiān)視模擬試題含解析_第2頁](http://file4.renrendoc.com/view/bd1429c369c6053676bf86e52fc97252/bd1429c369c6053676bf86e52fc972522.gif)
![2022-2023學年貴州黔東南州三校聯(lián)考數(shù)學高一下期末質量跟蹤監(jiān)視模擬試題含解析_第3頁](http://file4.renrendoc.com/view/bd1429c369c6053676bf86e52fc97252/bd1429c369c6053676bf86e52fc972523.gif)
![2022-2023學年貴州黔東南州三校聯(lián)考數(shù)學高一下期末質量跟蹤監(jiān)視模擬試題含解析_第4頁](http://file4.renrendoc.com/view/bd1429c369c6053676bf86e52fc97252/bd1429c369c6053676bf86e52fc972524.gif)
![2022-2023學年貴州黔東南州三校聯(lián)考數(shù)學高一下期末質量跟蹤監(jiān)視模擬試題含解析_第5頁](http://file4.renrendoc.com/view/bd1429c369c6053676bf86e52fc97252/bd1429c369c6053676bf86e52fc972525.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列{an}滿足且,則的值是()A.-5 B.- C.5 D.2.點M(4,m)關于點N(n,-3)的對稱點為P(6,-9)則()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=53.已知半圓C:(),A、B分別為半圓C與x軸的左、右交點,直線m過點B且與x軸垂直,點P在直線m上,縱坐標為t,若在半圓C上存在點Q使,則t的取值范圍是()A. B.C. D.4.若且,則下列不等式成立的是()A. B. C. D.5.等差數(shù)列中,則()A.8 B.6 C.4 D.36.已知實數(shù)m,n滿足不等式組則關于x的方程x2-(3m+2n)x+6mn=0的兩根之和的最大值和最小值分別是()A.7,-4 B.8,-8C.4,-7 D.6,-67.若、、,且,則下列不等式中一定成立的是()A. B. C. D.8.已知a,b,c滿足,那么下列選項一定正確的是()A. B. C. D.9.設,,則的值可表示為()A. B. C. D.10.若等差數(shù)列和的公差均為,則下列數(shù)列中不為等差數(shù)列的是()A.(為常數(shù)) B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層燈數(shù)為_____________12.函數(shù)的值域為_____________.13.在數(shù)列中,,,則________.14.已知變量之間滿足線性相關關系,且之間的相關數(shù)據(jù)如下表所示:_____.12340.13.1415.若,則______(用表示).16.水平放置的的斜二測直觀圖如圖所示,已知,,則邊上的中線的實際長度為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在中,,,點在邊上,且,.(1)求;(2)求的長.18.已知點,,點為曲線上任意一點且滿足(1)求曲線的方程;(2)設曲線與軸交于兩點,點是曲線上異于的任意一點,直線分別交直線:于點,試問軸上是否存在一個定點,使得?若存在,求出點的坐標;若不存在,請說明理由.19.已知直線的方程為.(1)求直線所過定點的坐標;(2)當時,求點關于直線的對稱點的坐標;(3)為使直線不過第四象限,求實數(shù)的取值范圍.20.年月日是第二十七屆“世界水日”,月日是第三十二屆“中國水周”.我國紀念年“世界水日”和“中國水周”活動的宣傳主題為“堅持節(jié)水優(yōu)先,強化水資源管理”.某中學課題小組抽取、兩個小區(qū)各戶家庭,記錄他們月份的用水量(單位:)如下表:小區(qū)家庭月用水量小區(qū)家庭月用水量(1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖,從莖葉圖看,哪個小區(qū)居民節(jié)水意識更好?(2)從用水量不少于的家庭中,、兩個小區(qū)各隨機抽取一戶,求小區(qū)家庭的用水量低于小區(qū)的概率.21.等差數(shù)列的首項為23,公差為整數(shù),且第6項為正數(shù),從第7項起為負數(shù).求此數(shù)列的公差及前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】試題分析:即數(shù)列是公比為3的等比數(shù)列.考點:1.等比數(shù)列的定義及基本量的計算;2.對數(shù)的運算性質.2、D【解析】因為點M,P關于點N對稱,所以由中點坐標公式可知.3、A【解析】
根據(jù)題意,設PQ與x軸交于點T,分析可得在Rt△PBT中,|BT||PB||t|,分p在x軸上方、下方和x軸上三種情況討論,分析|BT|的最值,即可得t的范圍,綜合可得答案.【詳解】根據(jù)題意,設PQ與x軸交于點T,則|PB|=|t|,由于BP與x軸垂直,且∠BPQ,則在Rt△PBT中,|BT||PB||t|,當P在x軸上方時,PT與半圓有公共點Q,PT與半圓相切時,|BT|有最大值3,此時t有最大值,當P在x軸下方時,當Q與A重合時,|BT|有最大值2,|t|有最大值,則t取得最小值,t=0時,P與B重合,不符合題意,則t的取值范圍為[,0)];故選A.【點睛】本題考查直線與圓方程的應用,涉及直線與圓的位置關系,屬于中檔題.4、D【解析】
利用作差法對每一個選項逐一判斷分析.【詳解】選項A,所以a≥b,所以該選項錯誤;選項B,,符合不能確定,所以該選項錯誤;選項C,,符合不能確定,所以該選項錯誤;選項D,,所以,所以該選項正確.故選D【點睛】本題主要考查實數(shù)大小的比較,意在考查學生對該知識的理解掌握水平和分析推理能力.5、D【解析】
設等差數(shù)列的公差為,根據(jù)題意,求解,進而可求得,即可得到答案.【詳解】由題意,設等差數(shù)列的公差為,則,即,又由,故選D.【點睛】本題主要考查了等差數(shù)列的通項公式的應用,其中解答中設等差數(shù)列的公差為,利用等差數(shù)列的通項公式化簡求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、A【解析】由題意得,方程的兩根之和,畫出約束條件所表示的平面區(qū)域,如圖所示,由,可得,此時,由,可得,此時,故選A.7、D【解析】
對,利用分析法證明;對,不式等兩邊同時乘以一個正數(shù),不等式的方向不變,乘以0再根據(jù)不等式是否取等進行考慮;對,考慮的情況;對,利用同向不等式的可乘性.【詳解】對,,因為大小無法確定,故不一定成立;對,當時,才能成立,故也不一定成立;對,當時不成立,故也不一定成立;對,,故一定成立.故選:D.【點睛】本題考查不等式性質的運用,考查不等式在特殊情況下能否成立的問題,考查思維的嚴謹性.8、D【解析】
c<b<a,且ac<1,可得c<1且a>1.利用不等式的基本性質即可得出.【詳解】∵c<b<a,且ac<1,∴c<1且a>1,b與1的大小關系不定.∴滿足bc>ac,ac<ab,故選D.【點睛】本題考查了不等式的基本性質,考查了推理能力與計算能力,屬于基礎題.9、A【解析】
由,可得到,然后根據(jù)反余弦函數(shù)的圖象與性質即可得到答案.【詳解】因為,所以,則.故選:A【點睛】本題主要考查反余弦函數(shù)的運用,熟練掌握反余弦函數(shù)的概念及性質是解決本題的關鍵.10、D【解析】
利用等差數(shù)列的定義對選項逐一進行判斷,可得出正確的選項.【詳解】數(shù)列和是公差均為的等差數(shù)列,則,,.對于A選項,,數(shù)列(為常數(shù))是等差數(shù)列;對于B選項,,數(shù)列是等差數(shù)列;對于C選項,,所以,數(shù)列是等差數(shù)列;對于D選項,,不是常數(shù),所以,數(shù)列不是等差數(shù)列.故選:D.【點睛】本題考查等差數(shù)列的定義和通項公式,注意等差數(shù)列定義的應用,考查推理能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】分析:設塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,利用等比數(shù)列前n項和公式能求出結果.詳解:設塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,∴S7=a1(1-2點睛:本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力.12、【解析】
分析函數(shù)在區(qū)間上的單調性,由此可求出該函數(shù)在區(qū)間上的值域.【詳解】由于函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),所以,函數(shù)在區(qū)間上也為增函數(shù),且,,當時,,因此,函數(shù)的值域為.故答案為:.【點睛】本題考查函數(shù)值域的求解,解題的關鍵就是判斷出函數(shù)的單調性,考查分析問題和解決問題的能力,屬于中等題.13、【解析】
由遞推公式可以求出,可以歸納出數(shù)列的周期,從而可得到答案.【詳解】由,,.,可推測數(shù)列是以3為周期的周期數(shù)列.所以。故答案為:【點睛】本題考查數(shù)量的遞推公式同時考查數(shù)列的周期性,屬于中檔題.14、【解析】
根據(jù)回歸直線方程過樣本點的中心,代入數(shù)據(jù)即可計算出的值.【詳解】因為,,所以,解得.故答案為:.【點睛】本題考查根據(jù)回歸直線方程過樣本點的中心求參數(shù),難度較易.15、【解析】
直接利用誘導公式化簡求解即可.【詳解】解:,則,故答案為:.【點睛】本題考查誘導公式的應用,三角函數(shù)化簡求值,考查計算能力,屬于基礎題.16、【解析】
利用斜二測直觀圖的畫圖規(guī)則,可得為一個直角三角形,且,得,從而得到邊上的中線的實際長度為.【詳解】利用斜二測直觀圖的畫圖規(guī)則,平行于軸或在軸上的線段,長度保持不變;平行于軸或在軸上的線段,長度減半,利用逆向原則,所以為一個直角三角形,且,所以,所以邊上的中線的實際長度為.【點睛】本題考查斜二測畫法的規(guī)則,考查基本識圖、作圖能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)7.【解析】試題分析:(I)在中,利用外角的性質,得即可計算結果;(II)由正弦定理,計算得,在中,由余弦定理,即可計算結果.試題解析:(I)在中,∵,∴∴(II)在中,由正弦定理得:在中,由余弦定理得:∴考點:正弦定理與余弦定理.18、(1);(2)存在點使得成立.【解析】
(1)設P(x,y),由|PA|=2|PB|,得=2,由此能求出曲線的方程.(2)由題意得M(0,1),N(0,-1),設點R(x0,y0),(x0≠0),由點R在曲線上,得=1,直線RM的方程,從而直線RM與直線y=3的交點為,直線RN的方程為,從而直線RN與直線y=3的交點為,假設存在點S(0,m),使得成立,則,由此能求出存在點S,使得成立,且S點的坐標為.【詳解】(1)設,由,得:,整理得.所以曲線的方程為.(2)由題意得,,.設點,由點在曲線上,所以.直線的方程為,所以直線與直線的交點為.直線的方程為所以直線與直線的交點為.假設存在點,使得成立,則,.即,整理得.因為,所以,解得.所以存在點使得成立,且點的坐標為.【點睛】本題考查曲線方程的求法,考查是否存在滿足向量積為0的點的判斷與求法,考查圓、直線方程、向量的數(shù)量積公式等基礎知識,考查運算求解能力,考查化歸與轉化思想,是中檔題.19、(1);(2);(3)【解析】
(1)把直線化簡為,所以直線過定點(1,1);(2)設B點坐標為,利用軸對稱的性質列方程可以解得;(3)把直線化簡為,由直線不過第四象限,得,解出即可.【詳解】(1)直線的方程化簡為,點滿足方程,故直線所過定點的坐標為.(2)當時,直線的方程為,設點的坐標為,列方程組解得:,,故點關于直線的對稱點的坐標為,(3)把直線方程化簡為,由直線不過第四象限,得,解得,即的取值范圍是.【點睛】本題考查直線方程過定點,以及點關于直線對稱的問題,直線斜截式方程的應用,屬于基礎題.20、(1)見解析(2)【解析】
(1)根據(jù)表格中的數(shù)據(jù)繪制出莖葉圖,并結合莖葉圖中數(shù)據(jù)的分布可比較出兩個小區(qū)居民節(jié)水意識;(2)列舉出所有的基本事件,確定所有的基本事件數(shù),然后確定事件“小區(qū)家庭的用水量低于小區(qū)”所包含的基本事件數(shù),利用古典概型的概率公式可計算出事件“小區(qū)家庭的用水量低于小區(qū)”的概率.【詳解】(1)繪制如下莖葉圖:由以上莖葉圖可以看出,小區(qū)月用水量有的葉集中在莖、上,而小區(qū)月用水量有的葉集中在莖、上,由此可看出小區(qū)居民節(jié)水意識更好;(2)從用水量不少于的家庭中,、兩個小區(qū)各隨機抽取一戶的結果:、、、、、、、,共個基本事件,小區(qū)家庭的用水量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆河南省漯河市召陵區(qū)重點名校中考生物模擬試題含解析
- 2025屆遼寧省大連西崗區(qū)七校聯(lián)考中考聯(lián)考生物試題含解析
- 吉林省長春市第72中學2025屆中考聯(lián)考生物試卷含解析
- 2025屆浙江省金華市義烏市市級名校中考化學模擬預測題含解析
- 山東省棗莊市滕州市滕州育才中學2025屆初中生物畢業(yè)考試模擬沖刺卷含解析
- 醫(yī)院保潔服務項目合同
- 運輸汽車租賃合同范本
- 石灰石購銷合同協(xié)議
- 房地產租賃合同書2
- 全新工程返點協(xié)議下載
- 獵聘網(wǎng)在線人才測評題庫
- 《社區(qū)康復》課件-第八章 視力障礙患者的社區(qū)康復實踐
- 透析患者的血糖管理
- 2024年濰坊工程職業(yè)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 瀝青拌合站講義課件
- 《逆向建模與產品創(chuàng)新設計》課程標準
- 前置審方合理用藥系統(tǒng)建設方案
- 人教高中生物必修1第三章細胞核-系統(tǒng)的控制中心課件25張
- 2022年甘肅省蘭州市診斷考試(一診)數(shù)學試題(含答案解析)
- 裝載機裝車施工方案
- 國壽增員長廊講解學習及演練課件
評論
0/150
提交評論