版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角的終邊經(jīng)過點(3,-4),則的值為()A. B. C. D.2.已知三棱錐中,,,則三棱錐的外接球的表面積為()A. B.4 C. D.3.把十進(jìn)制數(shù)化為二進(jìn)制數(shù)為A. B.C. D.4.已知數(shù)列滿足,,則數(shù)列的前10項和為()A. B. C. D.5.若向量,,則()A. B. C. D.6.在中,內(nèi)角,,的對邊分別為,,,且=.則A. B. C. D.7.一個幾何體的三視圖如圖所示,則這個幾何的體積為()立方單位.A. B.C. D.8.已知函數(shù)在區(qū)間(1,2)上是增函數(shù),則實數(shù)a的取值范圍是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)9.在空間四邊形中,,,,分別是,的中點,,則異面直線與所成角的大小為()A. B. C. D.10.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.10二、填空題:本大題共6小題,每小題5分,共30分。11.若采用系統(tǒng)抽樣的方法從420人中抽取21人做問卷調(diào)查,為此將他們隨機編號為1,2,…,420,則抽取的21人中,編號在區(qū)間[241,360]內(nèi)的人數(shù)是______12.圓上的點到直線4x+3y-12=0的距離的最小值是13.一水平位置的平面圖形的斜二測直觀圖是一個底平行于軸,底角為,兩腰和上底長均為1的等腰梯形,則這個平面圖形的面積是.14.已知x、y滿足約束條件,則的最小值為________.15.已知點,,若直線與線段有公共點,則實數(shù)的取值范圍是____________.16.在等差數(shù)列中,若,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=asin(x)(a>0)在同一半周期內(nèi)的圖象過點O,P,Q,其中O為坐標(biāo)原點,P為函數(shù)f(x)的最高點,Q為函數(shù)f(x)的圖象與x軸的正半軸的交點,△OPQ為等腰直角三角形.(1)求a的值;(2)將△OPQ繞原點O按逆時針方向旋轉(zhuǎn)角α(0<α),得到△OP′Q′,若點P′恰好落在曲線y(x>0)上(如圖所示),試判斷點Q′是否也落在曲線y(x>0),并說明理由.18.已知的頂點,邊上的中線所在直線方程為,的平分線所在直線方程為,求:(Ⅰ)頂點的坐標(biāo);(Ⅱ)直線的方程19.已知函數(shù)f(x)=(1+)sin2x-2sin(x+)sin(x-).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范圍20.已知非零數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)若關(guān)于的不等式有解,求整數(shù)的最小值;(3)在數(shù)列中,是否存在首項、第項、第項(),使得這三項依次構(gòu)成等差數(shù)列?若存在,求出所有的;若不存在,請說明理由.21.銳角三角形的內(nèi)角A,B,C的對邊分別為a,b,c,且.(1)求A;(2)若,,求面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
先求出的值,即得解.【詳解】由題得,,所以.故選A【點睛】本題主要考查三角函數(shù)的坐標(biāo)定義,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.2、B【解析】
依據(jù)題中數(shù)據(jù),利用勾股定理可判斷出從而可得三棱錐各面都為直角三角形,進(jìn)而可知外接圓的直徑,即可求出三棱錐的外接球的表面積【詳解】如圖,因為,又,,從而可得三棱錐各面都為直角三角形,CD是三棱錐的外接球的直徑,在中,,,即,,故選B.【點睛】本題主要考查學(xué)生空間想象以及數(shù)學(xué)建模能力,能夠依據(jù)條件建立合適的模型是解題的關(guān)鍵.3、C【解析】選C.4、C【解析】
由判斷出數(shù)列是等比數(shù)列,再求出,利用等比數(shù)列前項和公式求解即可.【詳解】由,得,所以數(shù)列是以為公比的等比數(shù)列,又,所以,由等比數(shù)列前項和公式,.故選:C【點睛】本題主要考查等比數(shù)列的定義和等比數(shù)列前項和公式的應(yīng)用,考查學(xué)生的計算能力,屬于基礎(chǔ)題.5、B【解析】
根據(jù)向量的坐標(biāo)運算,先由,求得,再求的坐標(biāo).【詳解】因為,所以,所以.故選:B【點睛】本題主要考查了向量的坐標(biāo)運算,還考查了運算求解的能力,屬于基礎(chǔ)題.6、C【解析】試題分析:由正弦定理得,,由于,,,故答案為C.考點:正弦定理的應(yīng)用.7、D【解析】由三視圖可知幾何體是由一個四棱錐和半個圓柱組合而成的,所以所求的體積為,故選D.8、C【解析】
由題意可得在上為減函數(shù),列出不等式組,由此解得的范圍.【詳解】∵函數(shù)在區(qū)間上是增函數(shù),∴函數(shù)在上為減函數(shù),其對稱軸為,∴可得,解得.故選:C.【點睛】本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.9、D【解析】
平移兩條異面直線到相交,根據(jù)余弦定理求解.【詳解】如圖所示:設(shè)的中點為,連接,所以,則是所成的角或其補角,又根據(jù)余弦定理得:,所以,異面直線與所成角的為,故選D.【點睛】本題考查異面直線所成的角和余弦定理.注意異面直線所成的角的取值范圍是.10、C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設(shè)等差數(shù)列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項的值,可通過構(gòu)建和的方程組求通項公式.二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】試題分析:由題意得,編號為,由得共6個.考點:系統(tǒng)抽樣12、【解析】
計算出圓心到直線的距離,減去半徑,求得圓上的點到直線的最小距離.【詳解】圓的圓心為,半徑.圓心到直線的距離為,故最小距離為.【點睛】本小題主要考查圓上的點到直線距離最小值的求法,考查點到直線距離公式,屬于基礎(chǔ)題.13、【解析】如圖過點作,,則四邊形是一個內(nèi)角為45°的平行四邊形且,中,,則對應(yīng)可得四邊形是矩形且,是直角三角形,.所以14、-3【解析】
作出可行域,目標(biāo)函數(shù)過點時,取得最小值.【詳解】作出可行域如圖表示:目標(biāo)函數(shù),化為,當(dāng)過點時,取得最大值,則取得最小值,由,解得,即,的最小值為.故答案為:【點睛】本題考查二元一次不等式組表示平面區(qū)域,以及線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.15、【解析】
根據(jù)直線方程可確定直線過定點;求出有公共點的臨界狀態(tài)時的斜率,即和;根據(jù)位置關(guān)系可確定的范圍.【詳解】直線可整理為:直線經(jīng)過定點,又直線的斜率為的取值范圍為:本題正確結(jié)果:【點睛】本題考查根據(jù)直線與線段的交點個數(shù)求解參數(shù)范圍的問題,關(guān)鍵是能夠明確直線經(jīng)過的定點,從而確定臨界狀態(tài)時的斜率.16、【解析】
利用等差中項的性質(zhì)可求出的值.【詳解】由等差中項的性質(zhì)可得,解得.故答案為:.【點睛】本題考查利用等差中項的性質(zhì)求項的值,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)2;(2)見解析.【解析】
(1)由已知利用周期公式可求最小正周期T=8,由題意可求Q坐標(biāo)為(1,0).P坐標(biāo)為(2,a),結(jié)合△OPQ為等腰直角三角形,即可得解a的值.(2)由(Ⅰ)知,|OP|=2,|OQ|=1,可求點P′,Q′的坐標(biāo),由點P′在曲線y(x>0)上,利用倍角公式,誘導(dǎo)公式可求cos2,又結(jié)合0<α,可求sin2α的值,由于1cosα?1sinα=8sin2α=23,即可證明點Q′不落在曲線y(x>0)上.【詳解】(Ⅰ)因為函數(shù)f(x)=asin(x)(a>0)的最小正周期T8,所以函數(shù)f(x)的半周期為1,所以|OQ|=1.即有Q坐標(biāo)為(1,0).又因為P為函數(shù)f(x)圖象的最高點,所以點P坐標(biāo)為(2,a),又因為△OPQ為等腰直角三角形,所以a2.(Ⅱ)點Q′不落在曲線y(x>0)上.理由如下:由(Ⅰ)知,|OP|=2,|OQ|=1,所以點P′,Q′的坐標(biāo)分別為(2cos(),2sin()),(1cosα,1sinα),因為點P′在曲線y(x>0)上,所以3=8cos()sin()=1sin(2)=1cos2α,即cos2,又0<α,所以sin2α.又1cosα?1sinα=8sin2α=823.所以點Q′不落在曲線y(x>0)上.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)設(shè),可得中點坐標(biāo),代入直線可得;將點坐標(biāo)代入直線得,可構(gòu)造出方程組求得點坐標(biāo);(Ⅱ)設(shè)點關(guān)于的對稱點為,根據(jù)點關(guān)于直線對稱點的求解方法可求得,因為在直線上,根據(jù)兩點坐標(biāo)可求得直線方程.【詳解】(Ⅰ)設(shè),則中點坐標(biāo)為:,即:又,解得:,(Ⅱ)設(shè)點關(guān)于的對稱點為則,解得:邊所在的直線方程為:,即:【點睛】本題考查直線方程、直線交點的求解;關(guān)鍵是能夠熟練應(yīng)用中點坐標(biāo)公式和點關(guān)于直線對稱點的求解方法,屬于??碱}型.19、(1);(2)[0,].【解析】
(1)f(x)=·sin2x-2(sinx+cosx)(sinx-cosx)=sin2x+cosxsinx-sin2x+cos2x=sinxcosx+cos2x,∴f(α)====.(2)由(1)知,f(x)=cos2x+sinxcosx=+=sin(2x+)+,∵≤x≤,≤2x+≤,-≤sin(2x+)≤1,0≤f(x)≤,∴f(x)∈[0,].本試題組要是考查了三角函數(shù)的運用.20、(1)證明見解析;(2);(3)存在,或.【解析】
(1)由條件可得,即,再由等比數(shù)列的定義即可得證;
(2)由等比數(shù)列的通項公式求得,,再由數(shù)列的單調(diào)性的判斷,可得最小值,解不等式即可得到所求最小值;
(3)假設(shè)存在首項、第項、第項(),使得這三項依次構(gòu)成等差數(shù)列,由等差數(shù)列的中項的性質(zhì)和恒等式的性質(zhì),可得,的方程,解方程可得所求值.【詳解】解:(1)證明:由,
得,即,
所以數(shù)列是首項為2,公比為2的等比數(shù)列;
(2)由(1)可得,,則
故,
設(shè),
則,
所以單調(diào)遞增,
則,于是,即,
故整數(shù)的最小值為;
(3)由上面得,,
設(shè),
要使得成等差數(shù)列,即,
即,
得,
,
,
故為偶數(shù),為奇數(shù),
或.【點睛】本題考查等比數(shù)列的定義和通項公式的運用,考查不等式恒成立問題的解法,注意運用函數(shù)的單調(diào)性求得最值,考查存在性問題的解法,注意運用恒等式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 賀州學(xué)院《教師職業(yè)技能》2023-2024學(xué)年第一學(xué)期期末試卷
- 菏澤學(xué)院《音樂鑒賞》2022-2023學(xué)年第一學(xué)期期末試卷
- 菏澤學(xué)院《藥用植物學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 菏澤學(xué)院《土力學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 河南師范大學(xué)《中國教育論著選讀》2022-2023學(xué)年第一學(xué)期期末試卷
- 河南師范大學(xué)《油畫基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷
- 河南師范大學(xué)《信號與系統(tǒng)》2021-2022學(xué)年第一學(xué)期期末試卷
- 河南師范大學(xué)《外國文學(xué)(一)》2022-2023學(xué)年第一學(xué)期期末試卷
- 河南師范大學(xué)《中國音樂史與名作欣賞1》2022-2023學(xué)年第一學(xué)期期末試卷
- 河南師范大學(xué)《國際經(jīng)貿(mào)》2023-2024學(xué)年第一學(xué)期期末試卷
- GB/T 18281.7-2024醫(yī)療保健產(chǎn)品滅菌生物指示物第7部分:選擇、使用和結(jié)果判斷指南
- 北京四中初一年級期中語文試題
- 2024年消防宣傳月知識競賽考試題庫300題(含答案)
- 妊娠期高血壓護(hù)理
- 地理大洲和大洋 課件 2024-2025學(xué)年七年級地理上學(xué)期(2024)人教版
- 2024年事業(yè)單位考試(綜合管理類A類)職業(yè)能力傾向測驗試卷及答案指導(dǎo)
- 二十屆三中全會精神學(xué)習(xí)試題及答案(100題)
- 2024二十屆三中全會知識競賽題庫及答案
- 2024年江蘇省昆山市自然資源和規(guī)劃局招聘編外13人歷年(高頻重點復(fù)習(xí)提升訓(xùn)練)共500題附帶答案詳解
- 小學(xué)一年級拼音天天練
- 支氣管哮喘急性發(fā)作個案護(hù)理記錄
評論
0/150
提交評論