




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角,,所對的邊分別為,,,且邊上的高為,則的最大值是()A.8 B.6 C. D.42.在中,所對的邊分別為,若,,,則()A. B. C.1 D.33.過點且與直線平行的直線方程是()A. B.C. D.4.已知函數(shù),則函數(shù)的最小正周期為()A. B. C. D.5.在△ABC中,D是邊BC的中點,則=A. B. C. D.6.已知兩個正數(shù)a,b滿足,則的最小值是(
)A.2 B.3 C.4 D.57.在中,,,,則=()A. B.C. D.8.在中,分別是角的對邊,若,且,則的值為()A.2 B. C. D.49.已知樣本的平均數(shù)是10,方差是2,則的值為()A.88 B.96 C.108 D.11010.設變量滿足約束條件,則目標函數(shù)的最大值為()A.3 B.4 C.18 D.40二、填空題:本大題共6小題,每小題5分,共30分。11.在區(qū)間上,與角終邊相同的角為__________.12.已知數(shù)列中,其前項和為,,則_____.13.已知,為單位向量,且,若向量滿足,則的最小值為_____.14.已知實數(shù)滿足約束條件,若目標函數(shù)僅在點處取得最小值,則的取值范圍是__________.15.設為,的反函數(shù),則的值域為______.16.已知數(shù)列為等比數(shù)列,,,則數(shù)列的公比為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,已知,是邊上的一點,,,.(1)求的大??;(2)求的長.18.已知向量,且(1)當時,求及的值;(2)若函數(shù)的最小值是,求實數(shù)的值.19.已知函數(shù).(1)求函數(shù)的定義域;(2)當為何值時,等式成立?20.為了了解四川省各景點在大眾中的熟知度,隨機對歲的人群抽樣了人,回答問題“四川省有哪幾個著名的旅游景點?”統(tǒng)計結果如表.組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率第組第組第組第組第組(1)分別求出的值;(2)從第,,組回答正確的人中用分層抽樣的方法抽取人,求第,,組每組各抽取多少人?(3)通過直方圖求出年齡的眾數(shù),平均數(shù).21.已知集合,數(shù)列的首項,且當時,點,數(shù)列滿足.(1)試判斷數(shù)列是否是等差數(shù)列,并說明理由;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】,這個形式很容易聯(lián)想到余弦定理:cosA,①而條件中的“高”容易聯(lián)想到面積,bcsinA,即a2=2bcsinA,②將②代入①得:b2+c2=2bc(cosA+sinA),∴=2(cosA+sinA)=4sin(A+),當A=時取得最大值4,故選D.點睛:三角形中最值問題,一般轉化為條件最值問題:先根據(jù)正、余弦定理及三角形面積公式結合已知條件靈活轉化邊和角之間的關系,利用基本不等式或函數(shù)方法求最值.在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應用,否則會出現(xiàn)錯誤.2、A【解析】
利用三角形內角和為,得到,利用正弦定理求得.【詳解】因為,,所以,在中,,所以,故選A.【點睛】本題考查三角形內角和及正弦定理的應用,考查基本運算求解能力.3、D【解析】
先由題意設所求直線為:,再由直線過點,即可求出結果.【詳解】因為所求直線與直線平行,因此,可設所求直線為:,又所求直線過點,所以,解得,所求直線方程為:.故選:D【點睛】本題主要考查求直線的方程,熟記直線方程的常見形式即可,屬于基礎題型.4、D【解析】
根據(jù)二倍角公式先化簡,再根據(jù)即可?!驹斀狻坑深}意得,所以周期為.所以選擇D【點睛】本題主要考查了二倍角公式;??嫉亩督枪接姓?、余弦、正切。屬于基礎題。5、C【解析】分析:利用平面向量的減法法則及共線向量的性質求解即可.詳解:因為是的中點,所以,所以,故選C.點睛:本題主要考查共線向量的性質,平面向量的減法法則,屬于簡單題.6、D【解析】
根據(jù)題意,分析可得,對其變形可得,由基本不等式分析可得答案.【詳解】解:根據(jù)題意,正數(shù),滿足,則;即的最小值是;故選:.【點睛】本題考查基本不等式的性質以及應用,關鍵是掌握基本不等式應用的條件.7、C【解析】
根據(jù)正弦定理,代入即可求解.【詳解】因為中,,,由正弦定理可知代入可得故選:C【點睛】本題考查了正弦定理在解三角形中的應用,屬于基礎題.8、A【解析】
由正弦定理,化簡求得,解得,再由余弦定理,求得,即可求解,得到答案.【詳解】在中,因為,且,由正弦定理得,因為,則,所以,即,解得,由余弦定理得,即,解得,故選A.【點睛】本題主要考查了正弦定理、余弦定理的應用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關系,熟練掌握定理、合理運用是解本題的關鍵.通常當涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當涉及三邊或兩邊及其夾角時,運用余弦定理求解.9、B【解析】
根據(jù)平均數(shù)和方差公式列方程組,得出和的值,再由可求得的值.【詳解】由于樣本的平均數(shù)為,則有,得,由于樣本的方差為,有,得,即,,因此,,故選B.【點睛】本題考查利用平均數(shù)與方差公式求參數(shù),解題的關鍵在于平均數(shù)與方差公式的應用,考查計算能力,屬于中等題.10、C【解析】不等式所表示的平面區(qū)域如下圖所示,當所表示直線經過點時,有最大值考點:線性規(guī)劃.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)與終邊相同的角可以表示為這一方法,即可得出結論.【詳解】因為,所以與角終邊相同的角為.【點睛】本題考查終邊相同的角的表示方法,考查對基本概念以及基本知識的熟練程度,考查了數(shù)學運算能力,是簡單題.12、1【解析】
本題主要考查了已知數(shù)列的通項式求前和,根據(jù)題目分奇數(shù)項和偶數(shù)項直接求即可?!驹斀狻浚瑒t.故答案為:1.【點睛】本題主要考查了給出數(shù)列的通項式求前項和以及極限。求數(shù)列的前常用的方法有錯位相減、分組求和、裂項相消等。本題主要利用了分組求和的方法。屬于基礎題。13、.【解析】
由題意設,,,由得出,它表示圓,由,利用向量的模的幾何意義從而得到最小值.【詳解】由題意設,,,因,即,所以,它表示圓心為,半徑的圓,又,所以,而表示圓上的點與點的距離的平方,由,所以,故的最小值為.故答案為:.【點睛】本題考查了平面向量的數(shù)量積與應用問題,也考查了圓的方程與應用問題,屬于中檔題.14、【解析】
利用數(shù)形結合,討論的范圍,比較斜率大小,可得結果.【詳解】如圖,當時,,則在點處取最小值,符合當時,令,要在點處取最小值,則當時,要在點處取最小值,則綜上所述:故答案為:【點睛】本題考查目標函數(shù)中含參數(shù)的線性規(guī)劃問題,難點在于尋找斜率之間的關系,屬中檔題.15、【解析】
求出原函數(shù)的值域可得出其反函數(shù)的定義域,取交集可得出函數(shù)的定義域,再由函數(shù)的單調性可求出該函數(shù)的值域.【詳解】函數(shù)在上為增函數(shù),則函數(shù)的值域為,所以,函數(shù)的定義域為.函數(shù)的定義域為,由于函數(shù)與函數(shù)單調性相同,可知,函數(shù)在上為增函數(shù).當時,函數(shù)取得最小值;當時,函數(shù)取得最大值.因此,函數(shù)的值域為.故答案為:.【點睛】本題考查函數(shù)值域的求解,考查函數(shù)單調性的應用,明確兩個互為反函數(shù)的兩個函數(shù)具有相同的單調性是解題的關鍵,考查分析問題和解決問題的能力,屬于中等題.16、【解析】
設等比數(shù)列的公比為,由可求出的值.【詳解】設等比數(shù)列的公比為,則,,因此,數(shù)列的公比為,故答案為:.【點睛】本題考查等比數(shù)列公比的計算,在等比數(shù)列的問題中,通常將數(shù)列中的項用首項和公比表示,建立方程組來求解,考查運算求解能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)在中,由余弦定理得,最后根據(jù)的值及,即可得到的值;(2)在中,由正弦定理得到,從而代入數(shù)據(jù)進行運算即可得到的長.試題解析:(1)在中,,由余弦定理可得又因為,所以(2)在中,由正弦定理可得所以.考點:1.正弦定理;2.余弦定理;3.解斜三角形.18、(1),(2).【解析】
(1)以向量為載體求解向量數(shù)量積、模長,我們只需要把向量坐標表示出來,最后用公式就能輕松完成;(2)由(1)可以把表達式求出,最終化成二次復合型函數(shù)模式,考慮軸與區(qū)間的位置關系,我們就能對函數(shù)進行進一步的研究.【詳解】(1)因為,所以又因為,所以(2),當時,.當時,不滿足.當時,,,不滿足.綜上,實數(shù)的值為.【點睛】在研究三角函數(shù)相關的性質(值域、對稱中心、對稱軸、單調性……)我們都是將其化為(或者余弦、正切相對應)的形式,利用整體思想,我們能比較方便的去研究他們相關性質.第二問中我們其實就是求最小值問題,當然摻雜了二次函數(shù)的“軸變區(qū)間定”的考點.,綜合性較強.19、(1);(2).【解析】
(1)根據(jù)對數(shù)的真數(shù)大于零,得出,解出該不等式即可得出函數(shù)的定義域;(2)根據(jù)對數(shù)的運算性質可得出關于的方程,解出即可.【詳解】(1)由,得,所以,函數(shù)定義域為;(2)由,得,即,可得:,即,即,或,由于,得,所以,不合題意,所以,當時,等式成立.【點睛】本題考查了對數(shù)運算以及簡單的對數(shù)方程的求解,解題時不要忽略真數(shù)大于零這一條件的限制,考查運算求解能力,屬于基礎題.20、(1);(2)第組抽取人,第組抽取人,第組抽取人;(3)40,.【解析】
(1)由頻率分布表得第四組人數(shù)為25人,由頻率分布直方圖得第四組的頻率為0.25,從而求出.由此求出各組人數(shù),進而能求出,,,的值.(2)由第2,3,4組回答正確的人分別有18、27、9人,從中用分層抽樣的方法抽取6人,由此能求出第2,3,4組每組各抽取多少人.(3)由頻率分布直方圖能求出年齡的眾數(shù),平均數(shù).【詳解】(1)由頻率分布表得第四組人數(shù)為:人,由頻率分布直方圖得第四組的頻率為,.第一組抽取的人數(shù)為:人,第二組抽取的人數(shù)為:人,第三組抽取的人數(shù)為:人,第五組抽取的人數(shù)為:人,.(2)第,,組回答正確的人分別有、、人,從中用分層抽樣的方法抽取人,第組抽?。喝耍诮M抽?。喝耍诮M抽?。喝耍?)由頻率分布直方圖得:年齡的眾數(shù)為:,年齡
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年張家口貨運資格證考試有哪些項目
- 加工衣服合同范本
- 2025年重慶貨運從業(yè)資格證模擬考試保過版
- 買方解除合同范本
- 個人服裝采購合同范本
- 個人庭院出租合同范本
- 基槽土夾石換填施工方案
- 臨沂制砂機采購合同范本
- 免責任勞務合同范本
- 買賣農村房屋合同范本
- 牧場物語-礦石鎮(zhèn)的伙伴們-完全攻略
- ??翟诰€測評題
- 維修電工題庫(300道)
- 幼兒園數(shù)學《比較物體的大小》課件
- 住院證明模板
- DB37-T3953-2020醫(yī)療衛(wèi)生機構安全風險分級管控體系實施指南
- T-CSPSTC 111-2022 表層混凝土低滲透高密實化施工技術規(guī)程
- 食品經營安全管理制度目錄
- 南通大學開題報告模版
- 醫(yī)院急救中心勞務外包采購項目評標辦法(評分細則表)
- JTG H12-2015 公路隧道養(yǎng)護技術規(guī)范
評論
0/150
提交評論