寧夏銀川市第一中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第1頁
寧夏銀川市第一中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第2頁
寧夏銀川市第一中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第3頁
寧夏銀川市第一中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第4頁
寧夏銀川市第一中學(xué)2022-2023學(xué)年數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,,點是內(nèi)(包括邊界)的一動點,且,則的最大值是()A. B. C. D.2.化簡的結(jié)果是()A. B. C. D.3.函數(shù)的圖象是()A. B. C. D.4.在中,角、、所對的邊分別為、、,且,,,則的面積為()A. B. C. D.5.演講比賽共有9位評委分別給出某選手的原始評分,評定該選手的成績時,從9個原始評分中去掉1個最高分、1個最低分,得到7個有效評分.7個有效評分與9個原始評分相比,不變的數(shù)字特征是A.中位數(shù) B.平均數(shù)C.方差 D.極差6.如圖,是圓的直徑,點是半圓弧的兩個三等分點,,,則()A. B. C. D.7.從四件正品、兩件次品中隨機取出兩件,記“至少有一件次品”為事件,則的對立事件是()A.至多有一件次品 B.兩件全是正品 C.兩件全是次品 D.至多有一件正品8.如圖,在圓內(nèi)隨機撒一把豆子,統(tǒng)計落在其內(nèi)接正方形中的豆子數(shù)目,若豆子總數(shù)為n,落在正方形內(nèi)的豆子數(shù)為m,則圓周率π的估算值是()A.nmB.2nmC.3n9.設(shè)、滿足約束條件,則的最大值為()A. B.C. D.10.已知:,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等比數(shù)列an中,a3=2,a12.?dāng)?shù)列中,如果存在使得“,且”成立(其中,),則稱為的一個“谷值”。若且存在“谷值”則實數(shù)的取值范圍是__________.13.在數(shù)列an中,a1=2,a14._________________;15.設(shè)函數(shù)滿足,當(dāng)時,,則=________.16.已知,為銳角,且,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.遇龍塔建于明代萬歷年間,簡體磚石結(jié)構(gòu),屹立于永州市城北瀟水東岸,為湖南省重點文物保護(hù)單位之一.游客乘船進(jìn)行觀光,到達(dá)瀟水河河面的處時測得塔頂在北偏東45°的方向上,然后向正北方向行駛后到達(dá)處,測得此塔頂在南偏東的方向上,仰角為,且,若塔底與河面在同一水平面上,求此塔的高度.18.如圖所示,在四棱錐P-ABCD中,,,,平面底面ABCD,E和F分別是CD和PC的中點.求證:(1)平面BEF;(2)平面平面PCD.19.已知數(shù)列的首項,其前n項和為滿足.(1)數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和表達(dá)式.20.在平面直角坐標(biāo)系中,已知曲線的方程是(,).(1)當(dāng),時,求曲線圍成的區(qū)域的面積;(2)若直線:與曲線交于軸上方的兩點,,且,求點到直線距離的最小值.21.某電視臺有一檔益智答題類綜藝節(jié)日,每期節(jié)目從現(xiàn)場編號為01~80的80名觀眾中隨機抽取10人答題.答題選手要從“科技”和“文藝”兩類題目中選一類作答,一共回答10個問題,答對1題得1分.(1)若采用隨機數(shù)表法抽取答題選手,按照以下隨機數(shù)表,從下方帶點的數(shù)字2開始向右讀,每次讀取兩位數(shù),一行用完接下一行左端,求抽取的第6個觀眾的編號.162277943949544354821737932378873509643842634916484421753315724550688770474476721763350258392120676(2)若采用等距系統(tǒng)抽樣法抽取答題選手,且抽取的最小編號為06,求抽取的最大編號.(3)某期節(jié)目的10名答題選手中6人選科技類題目,4人選文藝類題目.其中選擇科技類的6人得分的平均數(shù)為7,方差為;選擇文藝類的4人得分的平均數(shù)為8,方差為.求這期節(jié)目的10名答題選手得分的平均數(shù)和方差.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)分析得出點的軌跡為線段,結(jié)合圖形即可得到的最大值.【詳解】如圖:取,,,點是內(nèi)(包括邊界)的一動點,且,根據(jù)平行四邊形法則,點的軌跡為線段,則的最大值是,在中,,,,,故選:B【點睛】此題考查利用向量方法解決平面幾何中的線段長度最值問題,數(shù)形結(jié)合處理可以避免純粹的計算,降低難度.2、D【解析】

直接利用同角三角函數(shù)基本關(guān)系式以及二倍角公式化簡求值即可.【詳解】.故選.【點睛】本題主要考查應(yīng)用同角三角函數(shù)基本關(guān)系式和二倍角公式對三角函數(shù)的化簡求值.3、D【解析】

求出分段函數(shù)的解析式,由此確定函數(shù)圖象.【詳解】由于,根據(jù)函數(shù)解析式可知,D選項符合.故選:D【點睛】本小題主要考查分段函數(shù)圖象的判斷,屬于基礎(chǔ)題.4、B【解析】

由正弦定理得,利用余弦定理可求出的值,然后利用三角形的面積公式可求得的面積.【詳解】,,又,,由余弦定理可得,可得,所以,的面積為.故選:B.【點睛】本題考查三角形面積的計算,同時也考查了余弦定理解三角形,考查計算能力,屬于中等題.5、A【解析】

可不用動筆,直接得到答案,亦可采用特殊數(shù)據(jù),特值法篩選答案.【詳解】設(shè)9位評委評分按從小到大排列為.則①原始中位數(shù)為,去掉最低分,最高分,后剩余,中位數(shù)仍為,A正確.②原始平均數(shù),后來平均數(shù)平均數(shù)受極端值影響較大,與不一定相同,B不正確③由②易知,C不正確.④原極差,后來極差可能相等可能變小,D不正確.【點睛】本題旨在考查學(xué)生對中位數(shù)、平均數(shù)、方差、極差本質(zhì)的理解.6、A【解析】

連接,證得,結(jié)合向量減法運算,求得.【詳解】連接,由于是半圓弧的兩個三等分點,所以,所以是等邊三角形,所以,所以四邊形是菱形,所以,所以.故選:A【點睛】本小題主要考查圓的幾何性質(zhì),考查向量相等的概念,考查向量減法的運算,屬于基礎(chǔ)題.7、B【解析】

根據(jù)對立事件的概念,選出正確選項.【詳解】從四件正品、兩件次品中隨機取出兩件,“至少有一件次品”的對立事件為兩件全是正品.故選:B【點睛】本小題主要考查對立事件的理解,屬于基礎(chǔ)題.8、B【解析】試題分析:設(shè)正方形的邊長為2.則圓的半徑為2,根據(jù)幾何概型的概率公式可以得到mn=4考點:幾何概型.【方法點睛】本題題主要考查“體積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與體積有關(guān)的幾何概型問題關(guān)鍵是計算問題題的總體積(總空間)以及事件的體積(事件空間);幾何概型問題還有以下幾點容易造成失分,在備考時要高度關(guān)注:(1)不能正確判斷事件是古典概型還是幾何概型導(dǎo)致錯誤;(2)基本事件對應(yīng)的區(qū)域測度把握不準(zhǔn)導(dǎo)致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導(dǎo)致錯誤.9、C【解析】

作出不等式組所表示的可行域,平移直線,觀察直線在軸上的截距最大時對應(yīng)的最優(yōu)解,再將最優(yōu)解代入目標(biāo)函數(shù)可得出結(jié)果.【詳解】作出不等式組所表示的可行域如下圖中的陰影部分區(qū)域表示:聯(lián)立,得,可得點的坐標(biāo)為.平移直線,當(dāng)該直線經(jīng)過可行域的頂點時,直線在軸上的截距最大,此時取最大值,即,故選:C.【點睛】本題考查簡單線性規(guī)劃問題,一般作出可行域,利用平移直線結(jié)合在坐標(biāo)軸上的截距取最值來取得,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.10、A【解析】

觀察已知角與待求的角之間的特殊關(guān)系,運用余弦的二倍角公式和誘導(dǎo)公式求解.【詳解】令,則,所以,所以,故選A.【點睛】本題關(guān)鍵在于觀察出已知角與待求的角之間的特殊關(guān)系,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】

先計算a5【詳解】aaa故答案為4【點睛】本題考查了等比數(shù)列的計算,意在考查學(xué)生的計算能力.12、【解析】

求出,,,當(dāng),遞減,遞增,分別討論,,是否存在“谷值”,注意運用單調(diào)性即可.【詳解】解:當(dāng)時,有,,當(dāng),遞減,遞增,且.若時,有,則不存在“谷值”;若時,,則不存在“谷值”;若時,①,則不存在"谷值";②,則不存在"谷值";③,存在"谷值"且為.綜上所述,的取值范圍是故答案為:【點睛】本題考查新定義及運用,考查數(shù)列的單調(diào)性和運用,正確理解新定義是迅速解題的關(guān)鍵,是一道中檔題.13、2+【解析】

因為a1∴a∴=(=2+ln14、1【解析】

利用誘導(dǎo)公式化簡即可得出答案【詳解】【點睛】本題考查誘導(dǎo)公式,屬于基礎(chǔ)題.15、【解析】

由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出結(jié)果.【詳解】∵函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,當(dāng)0≤x<π時,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案為:.【點睛】本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.16、【解析】

由題意求得,再利用兩角和的正切公式求得的值,可得的值.【詳解】,為銳角,且,即,.再結(jié)合,則,故答案為.【點睛】本題主要考查兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】

根據(jù)正弦定理求得,然后在直角三角形中求得,即可得到答案.【詳解】由題意,在中,,故又,故由正弦定理得:,解得,因為,所以,所以.【點睛】本題主要考查了解三角形的實際應(yīng)用問題,其中解答中熟練應(yīng)用正弦定理和直角三角形的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(2)證明見解析(2)證明見解析【解析】

(1)連接,交于,結(jié)合平行四邊形的性質(zhì)可得,再由線面平行的判定定理,即可得證(2)運用面面垂直的性質(zhì)定理可得平面,推得,,,再由線面垂直的判定定理和嗎垂直的判定定理,即可得證.【詳解】證明:(1)連接,交于,可得四邊形為平行四邊形,且為的中點,可得為的中位線,可得,平面,面,可得面;(2)平面底面,,可得平面,即有,,可得,由,,可得四邊形為矩形,即有,又,,可得,且所以有平面,而平面,則平面平面.【點睛】本題考查線面平行和面面垂直的判定,注意運用線線平行和線面垂直的判定定理,考查推理能力,屬于中檔題.19、(1);(2)【解析】

(1)根據(jù)等差數(shù)列性質(zhì),由可知為等差數(shù)列,結(jié)合首項與公差即可求得的表達(dá)式,由即可求得數(shù)列的通項公式;(2)代入數(shù)列的通項公式可得數(shù)列的通項公式.結(jié)合錯位相減法,即可求得數(shù)列的前n項和.【詳解】(1)由,可知是等差數(shù)列,其公差又,得,知首項為,得,即當(dāng)時,有當(dāng),也滿足此通項,故;(2)由(1)可知,所以可得由兩式相減得整理得.【點睛】本題考查了等差數(shù)列通項公式的求法,的應(yīng)用,錯位相減法求數(shù)列的前n項和,屬于中檔題.20、(1)4;(2).【解析】

(1)當(dāng),時,曲線的方程是,對絕對值內(nèi)的數(shù)進(jìn)行討論,得到四條直線圍成一個菱形,并求出面積為4;(2)對進(jìn)行討論,化簡曲線方程,并與直線方程聯(lián)立,求出點的坐標(biāo),由得到的關(guān)系,再利用點到直線的距離公式求出,從而求得.【詳解】(1)當(dāng),時,曲線的方程是,當(dāng)時,,當(dāng)時,,當(dāng)時,方程等價于,當(dāng)時,方程等價于,當(dāng)時,方程等價于,當(dāng)時,方程等價于,曲線圍成的區(qū)域為菱形,其面積為;(2)當(dāng),時,有,聯(lián)立直線可得,當(dāng),時,有,聯(lián)立直線可得,由可得,即有,化為,點到直線距離,由題意可得,,,即,可得,,可得當(dāng),即時,點到直線距離取得最小值.【點睛】解析幾何的思想方法是坐標(biāo)法,通過代數(shù)運算解決幾何問題,本題對運算能力的要求是比較高的.21、(1)42;(2)78;(3)平均數(shù)為7.4,方差為2.24【解析】

(1)根據(jù)隨機數(shù)表依次讀取數(shù)據(jù)即可,取01~80之間的數(shù)據(jù);(2)根據(jù)系統(tǒng)抽樣,確定組矩,計算可得;(3)根據(jù)平均數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論