版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某同學用收集到的6組數(shù)據(jù)對(xi,yi)(i=1,2,3,4,5,6)制作成如圖所示的散點圖(點旁的數(shù)據(jù)為該點坐標),并由最小二乘法計算得到回歸直線l的方程:x,相關指數(shù)為r.現(xiàn)給出以下3個結(jié)論:①r>0;②直線l恰好過點D;③1;其中正確的結(jié)論是A.①② B.①③C.②③ D.①②③2.已知數(shù)列{an}的前n項和為Sn,Sn=2aA.145 B.114 C.83.已知的內(nèi)角的對邊分別為,若,則()A. B. C. D.4.一個正四棱錐的底面邊長為2,高為,則該正四棱錐的全面積為A.8 B.12 C.16 D.205.《九章算術》是我國古代數(shù)學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為弧田面積,弧田(如圖所示)由圓弧和其所對的弦圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑為6米的弧田,按照上述經(jīng)驗公式計算所得弧田面積大約是()()A.16平方米 B.18平方米C.20平方米 D.24平方米6.將甲、乙兩個籃球隊5場比賽的得分數(shù)據(jù)整理成如圖所示的莖葉圖,由圖可知以下結(jié)論正確的是()A.甲隊平均得分高于乙隊的平均得分中乙B.甲隊得分的中位數(shù)大于乙隊得分的中位數(shù)C.甲隊得分的方差大于乙隊得分的方差D.甲乙兩隊得分的極差相等7.(2015新課標全國I理科)《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中有如下問題:“今有委米依垣內(nèi)角,下周八尺,高五尺.問:積及為米幾何?”其意思為:“在屋內(nèi)墻角處堆放米(如圖,米堆為一個圓錐的四分之一),米堆為一個圓錐的四分之一),米堆底部的弧長為8尺,米堆的高為5尺,問米堆的體積和堆放的米各為多少?”已知1斛米的體積約為1.62立方尺,圓周率約為3,估算出堆放的米約有A.14斛 B.22斛C.36斛 D.66斛8.設向量,,則是的A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件9.已知函數(shù),則下列說法正確的是()A.圖像的對稱中心是B.在定義域內(nèi)是增函數(shù)C.是奇函數(shù)D.圖像的對稱軸是10.函數(shù)的圖象可能是().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)分別由下表給出:123211123321則當時,_____________.12.已知函數(shù),若,且,則__________.13.已知向量,,且與垂直,則的值為______.14.已知線段上有個確定的點(包括端點與).現(xiàn)對這些點進行往返標數(shù)(從…進行標數(shù),遇到同方向點不夠數(shù)時就“調(diào)頭”往回數(shù)).如圖:在點上標,稱為點,然后從點開始數(shù)到第二個數(shù),標上,稱為點,再從點開始數(shù)到第三個數(shù),標上,稱為點(標上數(shù)的點稱為點),……,這樣一直繼續(xù)下去,直到,,,…,都被標記到點上,則點上的所有標記的數(shù)中,最小的是_______.15.已知數(shù)列的通項公式,則_______.16.設為三條不同的直線,為兩個不同的平面,給出下列四個判斷:①若則;②若是在內(nèi)的射影,,則;③底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;④若球的表面積擴大為原來的16倍,則球的體積擴大為原來的32倍;其中正確的為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設等差數(shù)列中,.(1)求數(shù)列的通項公式;(2)若等比數(shù)列滿足,求數(shù)列的前項和.18.已知.(Ⅰ)化簡;(Ⅱ)已知,求的值.19.為了加強“平安校園”建設,有效遏制涉校案件的發(fā)生,保障師生安全,某校決定在學校門口利用一側(cè)原有墻體,建造一間墻高為3米,底面為24平方米,且背面靠墻的長方體形狀的校園警務室.由于此警務室的后背靠墻,無需建造費用,甲工程隊給出的報價為:屋子前面新建墻體的報價為每平方米400元,左右兩面新建墻體報價為每平方米300元,屋頂和地面以及其他報價共計14400元.設屋子的左右兩面墻的長度均為x米(3≤x≤6).(Ⅰ)當左右兩面墻的長度為多少時,甲工程隊報價最低?并求出最低報價.(Ⅱ)現(xiàn)有乙工程隊也要參與此警務室的建造競標,其給出的整體報價為1800a(1+x)x元(a>0),若無論左右兩面墻的長度為多少米,乙工程隊都能競標成功,試求a20.已知函數(shù).(1)求的單調(diào)增區(qū)間;(2)求的圖像的對稱中心與對稱軸.21.如圖,在直四棱柱中,底面為菱形,為中點.(1)求證:平面;(2)求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由圖可知這些點分布在一條斜率大于零的直線附近,所以為正相關,即相關系數(shù)因為所以回歸直線的方程必過點,即直線恰好過點;因為直線斜率接近于AD斜率,而,所以③錯誤,綜上正確結(jié)論是①②,選A.2、B【解析】
由Sn=2an-2,可得Sn-1=2an-1-2兩式相減可得公比的值,由S1=2a1-2=【詳解】因為Sn=2a兩式相減化簡可得an公比q=a由S1=2a∵a則4×2m+n-2=64∴1當且僅當nm=9mn時取等號,此時∵m,n取整數(shù),∴均值不等式等號條件取不到,則1m驗證可得,當m=2,n=4時,1m+9【點睛】本題主要考查等比數(shù)列的定義與通項公式的應用以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最小);三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用≥或≤時等號能否同時成立).3、B【解析】
已知兩角及一對邊,求另一邊,我們只需利用正弦定理.【詳解】在三角形中由正弦定理公式:,所以選擇B【點睛】本題直接屬于正弦定理的直接考查,代入公式就能求解.屬于簡單題.4、B【解析】
先求側(cè)面三角形的斜高,再求該正四棱錐的全面積.【詳解】由題得側(cè)面三角形的斜高為,所以該四棱錐的全面積為.故選B【點睛】本題主要考查幾何體的邊長的計算和全面積的求法,意在考查學生對這些知識的理解掌握水平和分析推理能力.5、C【解析】分析:根據(jù)已知數(shù)據(jù)分別計算弦和矢的長度,再按照弧田面積經(jīng)驗公式計算,即可得到答案.詳解:由題可知,半徑,圓心角,弦長:,弦心距:,所以矢長為.按照弧田面積經(jīng)驗公式得,面積故選C.點睛:本題考查弓形面積以及古典數(shù)學的應用問題,考查學生對題意的理解和計算能力.6、C【解析】
由莖葉圖分別計算甲、乙的平均數(shù),中位數(shù),方差及極差可得答案.【詳解】29;30,∴∴A錯誤;甲的中位數(shù)是29,乙的中位數(shù)是30,29<30,∴B錯誤;甲的極差為31﹣26=5,乙的極差為32﹣28=4,5∴D錯誤;排除可得C選項正確,故選C.【點睛】本題考查了由莖葉圖求數(shù)據(jù)的平均數(shù),極差,中位數(shù),運用了選擇題的做法即排除法的解題技巧,屬于基礎題.7、B【解析】試題分析:設圓錐底面半徑為r,則14×2×3r=8,所以r=163,所以米堆的體積為14考點:圓錐的性質(zhì)與圓錐的體積公式8、C【解析】
利用向量共線的性質(zhì)求得,由充分條件與必要條件的定義可得結(jié)論.【詳解】因為向量,,所以,即可以得到,不能推出,是“”的必要不充分條件,故選C.【點睛】本題主要考查向量共線的性質(zhì)、充分條件與必要條件的定義,屬于中檔題.利用向量的位置關系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.9、A【解析】
根據(jù)正切函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】.,由得,,的對稱中心為,,故正確;.在定義域內(nèi)不是增函數(shù),故錯誤;.為非奇非偶函數(shù),故錯誤;.的圖象不是軸對稱圖形,故錯誤.故選.【點睛】本題考查了正切函數(shù)的圖象與性質(zhì),考查了整體思想,意在考查學生對這些知識的理解掌握水平,屬基礎題.10、D【解析】
首先判斷函數(shù)的奇偶性,排除選項,再根據(jù)特殊區(qū)間時,判斷選項.【詳解】是偶函數(shù),是奇函數(shù),是奇函數(shù),函數(shù)圖象關于原點對稱,故排除A,B,當時,,,排除C.故選D.【點睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖象,一般從函數(shù)的定義域確定函數(shù)的位置,從函數(shù)的值域確定圖象的上下位置,也可判斷函數(shù)的奇偶性,排除圖象,或是根據(jù)函數(shù)的單調(diào)性,特征值,以及函數(shù)值的正負,是否有極值點等函數(shù)性質(zhì)判斷選項.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
根據(jù)已知,用換元法,從外層求到里層,即可求解.【詳解】令.故答案為:.【點睛】本題考查函數(shù)的表示,考查復合函數(shù)值求參數(shù),換元法是解題的關鍵,屬于基礎題.12、2【解析】不妨設a>1,
則令f(x)=|loga|x-1||=b>0,
則loga|x-1|=b或loga|x-1|=-b;
故x1=-ab+1,x2=-a-b+1,x3=a-b+1,x4=ab+1,
故故答案為2點睛:本題考查了絕對值方程及對數(shù)運算的應用,同時考查了指數(shù)的運算,注意計算的準確性.13、【解析】
根據(jù)與垂直即可得出,進行數(shù)量積的坐標運算即可求出x的值.【詳解】;;.故答案為.【點睛】本題考查向量垂直的充要條件,以及向量數(shù)量積的坐標運算,屬于基礎題.14、【解析】
將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標為2019,則,令,即可得.【詳解】依照題意知,標有2的是1+2,標有3的是1+2+3,……,標有2019的是1+2+3+……+2019,將將線段上的點考慮為一圓周,所以共有16個位置,利用規(guī)則,可知標記2019的是,2039190除以16的余數(shù)為6,即線段的第6個點標為2019,,令,,解得,故點上的所有標記的數(shù)中,最小的是3.【點睛】本題主要考查利用合情推理,分析解決問題的能力.意在考查學生的邏輯推理能力,15、【解析】
本題考查的是數(shù)列求和,關鍵是構(gòu)造新數(shù)列,求和時先考慮比較特殊的前兩項,剩余7項按照等差數(shù)列求和即可.【詳解】令,則所求式子為的前9項和.其中,,從第三項起,是一個以1為首項,4為公差的等差數(shù)列,,故答案為1.【點睛】本題考查的是數(shù)列求和,關鍵在于把所求式子轉(zhuǎn)換成為等差數(shù)列的前項和,另外,帶有絕對值的數(shù)列在求和時要注意里面的特殊項.16、①②【解析】
對四個命題分別進行判斷即可得到結(jié)論【詳解】①若,垂足為,與確定平面,,則,,則,,則,故,故正確②若,是在內(nèi)的射影,,根據(jù)三垂線定理,可得,故正確③底面是等邊三角形,側(cè)面都是有公共頂點的等腰三角形的三棱錐是正三棱錐,故不正確④若球的表面積擴大為原來的倍,則半徑擴大為原來的倍,則球的體積擴大為原來的倍,故不正確其中正確的為①②【點睛】本題主要考查了空間中直線與平面之間的位置關系、球的體積等知識點,數(shù)量掌握各知識點然后對其進行判斷,較為基礎。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求出公差,由公式得通項公式;(2)由(1)求出,計算公比,再由等比數(shù)列前項和公式得和.【詳解】(1)在等差數(shù)列中,,故設的公差為,則,即,所以,所以.(2)設數(shù)列的公比為,則,所以.【點睛】本題考查等差數(shù)列與等比數(shù)列的基本量法.求出數(shù)列的首項和公差(或公比),則數(shù)列的通項公式與前項和隨之而定.18、(Ⅰ);(Ⅱ)-2。【解析】試題分析:(Ⅰ)5分(Ⅱ)10分考點:三角函數(shù)化簡求值點評:三角函數(shù)化簡主要考察的是誘導公式,如等,本題難度不大,需要學生熟記公式19、(Ⅰ)4米時,28800元;(Ⅱ)0<a<12.25.【解析】
(Ⅰ)設甲工程隊的總造價為y元,先求出函數(shù)的解析式,再利用基本不等式求函數(shù)的最值得解;(Ⅱ)由題意可得,1800(x+16x)+14400>從而(x+4)2【詳解】(Ⅰ)設甲工程隊的總造價為y元,則y=3(300×2x+400×1800(x+16當且僅當x=16x,即即當左右兩側(cè)墻的長度為4米時,甲工程隊的報價最低為28800元.(Ⅱ)由題意可得,1800(x+16x)+14400>即(x+4)2x>令x+1=t,(x+4)又y=t+9t+6在t∈[4,7]所以0<a<12.25.【點睛】本題主要考查基本不等式的應用,意在考查學生對該知識的理解掌握水平和分析推理能力.20、(1);(2)對稱中心,;對稱軸為【解析】
利用誘導公式可將函數(shù)化為;(1)令,求得的范圍即為所求單調(diào)增區(qū)間;(2)令,求得即為對稱中心橫坐標,進而得到對稱中心;令,求得即為對稱軸.【詳解】(1)令,,解得:,的單調(diào)遞增區(qū)間為(2)令,,解得:,的對稱中心為,令,,解得:,的對稱軸為【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間、對稱軸和對稱中心
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度跨境電商供應鏈金融擔保合同4篇
- 二零二五年度文化中心場地租賃及文化活動組織合同3篇
- 二零二五年度社區(qū)操場租賃管理服務合同模板2篇
- 2025年中移全通系統(tǒng)集成有限公司招聘筆試參考題庫含答案解析
- 2025年浙江吉寧高速公路有限公司招聘筆試參考題庫含答案解析
- 2025年浙江紹興市濱海新城瀝海建設投資有限公司招聘筆試參考題庫附帶答案詳解
- 二零二五版農(nóng)貿(mào)場食品安全宣傳教育培訓合同4篇
- 2025年華東師大版九年級歷史上冊月考試卷
- 2025年粵教滬科版七年級歷史上冊月考試卷含答案
- 2024年度青海省公共營養(yǎng)師之四級營養(yǎng)師題庫與答案
- 電網(wǎng)建設項目施工項目部環(huán)境保護和水土保持標準化管理手冊(變電工程分冊)
- 介入科圍手術期護理
- 體檢科運營可行性報告
- 青光眼術后護理課件
- 設立工程公司組建方案
- 設立項目管理公司組建方案
- 《物理因子治療技術》期末考試復習題庫(含答案)
- 退款協(xié)議書范本(通用版)docx
- 焊錫膏技術培訓教材
- 江蘇省泰州市姜堰區(qū)2023年七年級下學期數(shù)學期末復習試卷【含答案】
- 答案之書(解答之書)-電子版精選答案
評論
0/150
提交評論