![2022-2023學(xué)年福建省漳達(dá)志中學(xué)高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view/f9253b66d00063ee7f64e28989f97f51/f9253b66d00063ee7f64e28989f97f511.gif)
![2022-2023學(xué)年福建省漳達(dá)志中學(xué)高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view/f9253b66d00063ee7f64e28989f97f51/f9253b66d00063ee7f64e28989f97f512.gif)
![2022-2023學(xué)年福建省漳達(dá)志中學(xué)高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view/f9253b66d00063ee7f64e28989f97f51/f9253b66d00063ee7f64e28989f97f513.gif)
![2022-2023學(xué)年福建省漳達(dá)志中學(xué)高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view/f9253b66d00063ee7f64e28989f97f51/f9253b66d00063ee7f64e28989f97f514.gif)
![2022-2023學(xué)年福建省漳達(dá)志中學(xué)高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view/f9253b66d00063ee7f64e28989f97f51/f9253b66d00063ee7f64e28989f97f515.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)據(jù),2的平均值為2,方差為1,則數(shù)據(jù)相對于原數(shù)據(jù)()A.一樣穩(wěn)定 B.變得比較穩(wěn)定C.變得比較不穩(wěn)定 D.穩(wěn)定性不可以判斷2.在中,內(nèi)角所對的邊分別為,若,且,則的形狀是()A.銳角三角形 B.鈍角三角形 C.等腰直角三角形 D.不確定3.“結(jié)繩計數(shù)”是遠(yuǎn)古時期人類智慧的結(jié)晶,即人們通過在繩子上打結(jié)來記錄數(shù)量.如圖所示的是一位農(nóng)民記錄自己采摘果實的個數(shù).在從右向左依次排列的不同繩子上打結(jié),滿四進(jìn)一.根據(jù)圖示可知,農(nóng)民采摘的果實的個數(shù)是()A.493 B.383 C.183 D.1234.P是直線x+y+2=0上任意一點,點Q在圓x-22+yA.2 B.4-2 C.4+25.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角6.設(shè)等差數(shù)列的前項的和為,若,,且,則()A. B. C. D.7.某公司在甲、乙、丙、丁四個地區(qū)分別有150,120,180,150個銷售點.公司為了調(diào)查產(chǎn)品銷售情況,需從這600個銷售點中抽取一個容量為100的樣本.記這項調(diào)查為①;在丙地區(qū)有20個大型銷售點,要從中抽取7個調(diào)查其銷售收入和售后服務(wù)等情況,記這項調(diào)查為②,則完成①,②這兩項調(diào)查宜采用的抽樣方法依次是()A.分層抽樣法,系統(tǒng)抽樣法 B.分層抽樣法,簡單隨機抽樣法C.系統(tǒng)抽樣法,分層抽樣法 D.簡單隨機抽樣法,分層抽樣法8.在中,已知、、分別是角、、的對邊,若,則的形狀為A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形9.角的終邊在直線上,則()A. B. C. D.10.已知四棱錐的底面是正方形,側(cè)棱長均相等,E是線段AB上的點(不含端點).設(shè)SE與BC所成的角為,SE與平面ABCD所成的角為β,二面角S-AB-C的平面角為,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在邊長為2的正三角形ABC內(nèi)任取一點P,則使點P到三個頂點的距離至少有一個小于1的概率是________.12.在三棱錐P-ABC中,平面PAB⊥平面ABC,ΔABC是邊長為23的等邊三角形,其中PA=PB=13.某公司租地建倉庫,每月土地占用費(萬元)與倉庫到車站的距離(公里)成反比.而每月庫存貨物的運費(萬元)與倉庫到車站的距離(公里)成正比.如果在距車站公里處建倉庫,這兩項費用和分別為萬元和萬元,由于地理位置原因.倉庫距離車站不超過公里.那么要使這兩項費用之和最小,最少的費用為_____萬元.14.已知,若對任意,均有,則的最小值為______;15.設(shè)等比數(shù)列的前項和為,若,,則的值為______.16.已知數(shù)列的前n項和,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函數(shù)f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;(3)是否存在實數(shù)a,使不等式f(x)≥2x-3對任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.18.已知圓與軸交于兩點,且(為圓心),過點且斜率為的直線與圓相交于兩點(Ⅰ)求實數(shù)的值;(Ⅱ)若,求的取值范圍;(Ⅲ)若向量與向量共線(為坐標(biāo)原點),求的值19.如圖所示,在直三棱柱中,,平面,D為AC的中點.(1)求證:平面;(2)求證:平面;(3)設(shè)E是上一點,試確定E的位置使平面平面BDE,并說明理由.20.如圖,三棱錐中,,、、、分別是、、、的中點.(1)證明:平面;(2)證明:四邊形是菱形21.在中,,求角A的值。
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)均值定義列式計算可得的和,從而得它們的均值,再由方差公式可得,從而得方差.然后判斷.【詳解】由題可得:平均值為2,由,,所以變得不穩(wěn)定.故選:C.【點睛】本題考查均值與方差的計算公式,考查方差的含義.屬于基礎(chǔ)題.2、C【解析】
通過正弦定理可得可得三角形為等腰,再由可知三角形是直角,于是得到答案.【詳解】因為,所以,所以,即.因為,所以,又因為,所以,所以,故的形狀是等腰直角三角形.【點睛】本題主要考查利用正弦定理判斷三角形形狀,意在考查學(xué)生的分析能力,計算能力,難度中等.3、C【解析】
根據(jù)題意將四進(jìn)制數(shù)轉(zhuǎn)化為十進(jìn)制數(shù)即可.【詳解】根據(jù)題干知滿四進(jìn)一,則表示四進(jìn)制數(shù),將四進(jìn)制數(shù)轉(zhuǎn)化為十進(jìn)制數(shù),得到故答案為:C.【點睛】本題以數(shù)學(xué)文化為載體,考查了進(jìn)位制等基礎(chǔ)知識,注意運用四進(jìn)制轉(zhuǎn)化為十進(jìn)制數(shù),考查運算能力,屬于基礎(chǔ)題.4、D【解析】
首先求出圓心到直線的距離與半徑比較大小,得到直線與圓是相離的,根據(jù)圓上的點到直線的距離的最小值等于圓心到直線的距離減半徑,求得結(jié)果.【詳解】因為圓心(2,0)到直線x+y+2=0的距離為d=2+0+2所以直線x+y+2=0與圓(x-2)2所以PQ的最小值等于圓心到直線的距離減去半徑,即PQmin故選D.【點睛】該題考查的是有關(guān)直線與圓的問題,涉及到的知識點有直線與圓的位置關(guān)系,點到直線的距離公式,圓上的點到直線的距離的最小值問題,屬于簡單題目.5、C【解析】
由題意,可知,所以角和角表示終邊相同的角,即可得到答案.【詳解】由題意,可知,所以角和角表示終邊相同的角,又由表示第三象限角,所以是第三象限角,故選C.【點睛】本題主要考查了象限角的表示和終邊相同角的表示,其中解答中熟記終邊相同角的表示是解答本題的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.6、C【解析】,,,,,,故選C.7、B【解析】
此題為抽樣方法的選取問題.當(dāng)總體中個體較少時宜采用簡單隨機抽樣法;當(dāng)總體中的個體差異較大時,宜采用分層抽樣;當(dāng)總體中個體較多時,宜采用系統(tǒng)抽樣.【詳解】依據(jù)題意,第①項調(diào)查中,總體中的個體差異較大,應(yīng)采用分層抽樣法;第②項調(diào)查總體中個體較少,應(yīng)采用簡單隨機抽樣法.
故選B.【點睛】本題考查隨機抽樣知識,屬基本題型、基本概念的考查.8、D【解析】
由,利用正弦定理可得,進(jìn)而可得sin2A=sin2B,由此可得結(jié)論.【詳解】∵,∴由正弦定理可得∴sinAcosA=sinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=π∴A=B或A+B=∴△ABC的形狀是等腰三角形或直角三角形故選D.【點睛】判斷三角形形狀的常見方法是:(1)通過正弦定理和余弦定理,化邊為角,利用三角變換得出三角形內(nèi)角之間的關(guān)系進(jìn)行判斷;(2)利用正弦定理、余弦定理,化角為邊,通過代數(shù)恒等變換,求出邊與邊之間的關(guān)系進(jìn)行判斷;(3)根據(jù)余弦定理確定一個內(nèi)角為鈍角進(jìn)而知其為鈍角三角形.9、C【解析】
先由直線的斜率得出,再利用誘導(dǎo)公式將分式化為弦的一次分式齊次式,并在分子分母中同時除以,利用弦化切的思想求出所求代數(shù)式的值.【詳解】角的終邊在直線上,,則,故選C.【點睛】本題考查誘導(dǎo)公式化簡求值,考查弦化切思想的應(yīng)用,弦化切一般適用于以下兩個方面:(1)分式為角弦的次分式齊次式,在分子分母中同時除以,可以弦化切;(2)代數(shù)式為角的二次整式,先除以,轉(zhuǎn)化為角弦的二次分式其次式,然后在分子分母中同時除以,可以實現(xiàn)弦化切.10、C【解析】
根據(jù)題意,分別求出SE與BC所成的角、SE與平面ABCD所成的角β、二面角S-AB-C的平面角的正切值,由正四棱錐的線段大小關(guān)系即可比較大小.【詳解】四棱錐的底面是正方形,側(cè)棱長均相等,所以四棱錐為正四棱錐,(1)過作,交于,過底面中心作交于,連接,取中點,連接,如下圖(1)所示:則;(2)連接如下圖(2)所示,則;(3)連接,則,如下圖(3)所示:因為所以,而均為銳角,所以故選:C.【點睛】本題考查了異面直線夾角、直線與平面夾角、平面與平面夾角的求法,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】以A,B,C為圓心,以1為半徑作圓,與△ABC交出三個扇形,當(dāng)P落在其內(nèi)時符合要求,∴P==.12、65π【解析】
本題首先可以通過題意畫出圖像,然后通過三棱錐的圖像性質(zhì)以及三棱錐的外接球的相關(guān)性質(zhì)來確定圓心的位置,最后根據(jù)各邊所滿足的幾何關(guān)系列出算式,即可得出結(jié)果。【詳解】如圖所示,作AB中點D,連接PD、CD,在CD上作三角形ABC的中心E,過點E作平面ABC的垂線,在垂線上取一點O,使得PO=OC。因為三棱錐底面是一個邊長為23的等邊三角形,E所以三棱錐的外接球的球心在過點E的平面ABC的垂線上,因為PO=OC,P、C兩點在三棱錐的外接球的球面上,所以O(shè)點即為球心,因為平面PAB⊥平面ABC,PA=PB,D為AB中點,所以PD⊥平面ABCCD=CA2-ADPD=P設(shè)球的半徑為r,則有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面積為S=4πr【點睛】本題考查三棱錐的相關(guān)性質(zhì),主要考查三棱錐的外接球的相關(guān)性質(zhì),考查如何通過三棱錐的幾何特征來確定三棱錐的外接球與半徑,考查推理能力,考查化歸與轉(zhuǎn)化思想,是難題。13、8.2【解析】
設(shè)倉庫與車站距離為公里,可得出、關(guān)于的函數(shù)關(guān)系式,然后利用雙勾函數(shù)的單調(diào)性求出的最小值.【詳解】設(shè)倉庫與車站距離為公里,由已知,.費用之和,求中,由雙勾函數(shù)的單調(diào)性可知,函數(shù)在區(qū)間上單調(diào)遞減,所以,當(dāng)時,取得最小值萬元,故答案為:.【點睛】本題考查利用雙勾函數(shù)求最值,解題的關(guān)鍵就是根據(jù)題意建立函數(shù)關(guān)系式,再利用基本不等式求最值時,若等號取不到時,可利用相應(yīng)的雙勾函數(shù)的單調(diào)性來求解,考查分析問題和解決問題的能力,屬于中等題.14、【解析】
根據(jù)對任意,均有,分析得到,再根據(jù)正弦型函數(shù)的最值公式求解出的最小值.【詳解】因為對任意,均有,所以,所以,所以,所以.故答案為:.【點睛】本題考查正弦型函數(shù)的應(yīng)用,難度一般.正弦型函數(shù)的最值一定是在對稱軸的位置取到,因此正弦型函數(shù)取最大值與最小值時對應(yīng)的自變量的差的絕對值最小為,此時最大值與最小值對應(yīng)的對稱軸相鄰.15、16【解析】
利用及可計算,從而可計算的值.【詳解】因為,故,因為,故,故,故填16.【點睛】等差數(shù)列或等比數(shù)列的處理有兩類基本方法:(1)利用基本量即把數(shù)學(xué)問題轉(zhuǎn)化為關(guān)于基本量的方程或方程組,再運用基本量解決與數(shù)列相關(guān)的問題;(2)利用數(shù)列的性質(zhì)求解即通過觀察下標(biāo)的特征和數(shù)列和式的特征選擇合適的數(shù)列性質(zhì)處理數(shù)學(xué)問題.16、【解析】
先利用求出,在利用裂項求和即可.【詳解】解:當(dāng)時,,當(dāng)時,,綜上,,,,故答案為:.【點睛】本題考查和的關(guān)系求通項公式,以及裂項求和,是基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1){x|x≤-1或x=1};(2);(3).【解析】試題分析:(1)把代入函數(shù)解析式,分段后分段求解方程的解集,取并集后得答案;(2)分段寫出函數(shù)的解析式,由在上單調(diào)遞增,則需第一段二次函數(shù)的對稱軸小于等于,第二段一次函數(shù)的一次項系數(shù)大于0,且第二段函數(shù)的最大值小于等于第一段函數(shù)的最小值,聯(lián)立不等式組后求解的取值范圍;(3)把不等式對一切實數(shù)恒成立轉(zhuǎn)化為函數(shù)對一切實數(shù)恒成立,然后對進(jìn)行分類討論,利用函數(shù)單調(diào)性求得的范圍,取并集后得答案.試題解析:(1)當(dāng)時,,則;當(dāng)時,由,得,解得或;當(dāng)時,恒成立,∴方程的解集為或.(2)由題意知,若在R上單調(diào)遞增,則解得,∴實數(shù)的取值范圍為.(3)設(shè),則,不等式對任意恒成立,等價于不等式對任意恒成立.①若,則,即,取,此時,∴,即對任意的,總能找到,使得,∴不存在,使得恒成立.②若,則,∴的值域為,∴恒成立③若,當(dāng)時,單調(diào)遞減,其值域為,由于,所以恒成立,當(dāng)時,由,知,在處取得最小值,令,得,又,∴,綜上,.18、(Ⅰ)(Ⅱ)(Ⅲ)【解析】
(Ⅰ)由圓的方程得到圓心坐標(biāo)和;根據(jù)、為等腰直角三角形可知,從而得到,解方程求得結(jié)果;(Ⅱ)設(shè)直線方程為;利用點到直線距離公式求得圓心到直線距離;由垂徑定理可得到,利用可構(gòu)造不等式求得結(jié)果;(Ⅲ)直線方程與圓方程聯(lián)立,根據(jù)直線與圓有兩個交點可根據(jù)得到的取值范圍;設(shè),,利用韋達(dá)定理求得,并利用求得,即可得到;利用向量共線定理可得到關(guān)于的方程,解方程求得滿足取值范圍的結(jié)果.【詳解】(Ⅰ)由圓得:圓心,由題意知,為等腰直角三角形設(shè)的中點為,則也為等腰直角三角形,解得:(Ⅱ)設(shè)直線方程為:則圓心到直線的距離:由,,可得:,解得:的取值范圍為:(Ⅲ)聯(lián)立直線與圓的方程:消去變量得:設(shè),,由韋達(dá)定理得:且,整理得:解得:或,與向量共線,,解得:或不滿足【點睛】本題考查直線與圓位置關(guān)系的綜合應(yīng)用,涉及到圓的方程的求解、垂徑定理的應(yīng)用、平面向量共線定理的應(yīng)用;求解直線與圓位置關(guān)系綜合應(yīng)用類問題的常用方法是靈活應(yīng)用圓心到直線的距離、直線與圓方程聯(lián)立,韋達(dá)定理構(gòu)造方程等方法,屬于??碱}型.19、(1)證明見詳解,(2)證明見詳解,(3)當(dāng)為的中點時,平面平面BDE,證明見詳解【解析】
(1)連接與相交于,可得,結(jié)合線面平行的判定定理即可證明平面(2)先證明和即可得出平面,然后可得,又,即可證明平面(3)當(dāng)為的中點時,平面平面BDE,由已知易得,結(jié)合平面可得平面,進(jìn)而根據(jù)面面垂直的判定定理得到結(jié)論.【詳解】(1)如圖,連接與相交于,則為的中點連接,又為的中點所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告公司員工聘用合同范本
- 公司紅酒購銷合同范本
- 公寓房屋出售合同范本
- 公司監(jiān)理合同范本
- 2025年手拉單軌行車項目投資可行性研究分析報告
- 分賬式合作合同范本
- 2025年度住宅小區(qū)建筑工程施工合同索賠風(fēng)險評估與防控措施
- 2025年度地?zé)崮荛_發(fā)打井技術(shù)服務(wù)協(xié)議4篇
- 2025年橡塑運輸帶項目可行性研究報告
- 2020-2025年中國眼部彩妝行業(yè)市場調(diào)研分析及投資戰(zhàn)略規(guī)劃報告
- 數(shù)學(xué)-河南省三門峽市2024-2025學(xué)年高二上學(xué)期1月期末調(diào)研考試試題和答案
- 2025年春新人教版數(shù)學(xué)七年級下冊教學(xué)課件
- 《心臟血管的解剖》課件
- 心肺復(fù)蘇課件2024
- 2024-2030年中國并購基金行業(yè)發(fā)展前景預(yù)測及投資策略研究報告
- 河道清淤安全培訓(xùn)課件
- 2024各科普通高中課程標(biāo)準(zhǔn)
- 環(huán)保鐵1215物質(zhì)安全資料表MSDS
- “君子教育”特色課程的探索
- AS9100D人力資源管理程序(范本)
- 《人為什么會生病》PPT課件
評論
0/150
提交評論