




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
FieldandWaveElectromagnetic電磁場(chǎng)與電磁波第17講11.Faraday’sLawofElectromagneticInductionReview22.Maxwell’sEquations3.ElectromagneticBoundaryConditionsTheintegralformThedifferentialform
SignificanceFaraday’slaw(電磁感應(yīng)定律)Ampere’scircuitallaw(全電流定律)Gauss’slaw(高斯定理)Noisolatedmagneticcharge(磁通連續(xù)性原理)34.PotentialFunctions5.WaveEquationsandTheirSolutions4Maxwell’sequationsandalltheequationsderivedfromthemsofarinthischapterholdforelectromagneticquantitieswithanarbitrarytime-dependence(時(shí)間任意相關(guān)).Theactualtypeoftimefunctionsthatthefieldquantitiesassumedependson(取決于)thesource(源)functions
andJ.Inengineering,oneofthe
mostimportant
casesoftime-varyingelectromagneticfieldsisthe
time-harmonic(sinusoidal)field(時(shí)諧場(chǎng)、正弦場(chǎng)).Inthistypeoffield,the
excitation
sourcevaries
sinusoidally
intimewith
a
singlefrequency(單一頻率).In
alinearsystem(線性系統(tǒng)),asinusoidallyvarying
source
generates
fields
thatalsovarysinusoidallyintimeatallpointsinthesystem(正弦變化的源產(chǎn)生正弦變化的場(chǎng)).1)whatisTime-HarmonicFields3.Time-HarmonicFields52)討論時(shí)諧場(chǎng)(正弦信號(hào))的原因Whenfieldsareexaminedinthismanner,thereisnolossingeneralityas(a)Theyareeasytogenerate(b)anytime-varyingperiodicfunctioncanberepresentedbyaFourierseriesintermsofsinusoidalfunctions(c)theprincipleofsuperpositioncanbeappliedunderlinearconditions.Inotherwords,wecanobtainthecompleteresponseoftimevaryingperiodicfieldsbyusinglinearcombinationsofmonochromaticresponses(a)正弦信號(hào)容易產(chǎn)生,50Hz交流電,通信的載波都是正弦信號(hào)(b)從信號(hào)分析的角度來(lái)看,正弦信號(hào)是一種簡(jiǎn)單基本的信號(hào)。正弦信號(hào)進(jìn)行各種運(yùn)算(加減微分積分后仍為同頻率正弦信號(hào))(c)傅立葉分析:任意周期信號(hào)分解為不同頻率的正弦之和(d)線性系統(tǒng)的疊加原理63.1
電路中的相量表達(dá)式Incircuittheory,youhavealreadyusedthephasornotation(相量)torepresentvoltagesandcurrentsvaryingsinusoidally
intime(1)Instantaneous(time-dependent)expressionofasinusoidalscalarquantity(瞬時(shí)值)三角函數(shù)表達(dá)式3Parameters:
angularfrequency:
amplitude:Im
phase:(2)
復(fù)數(shù)的表示xjyP(x,y)復(fù)平面上一點(diǎn)P7(3)正弦表達(dá)式和相量表達(dá)式的對(duì)應(yīng)關(guān)系相量的模正弦量的幅值初位相復(fù)角頻率是已知?頻率相量乘以ejt,再取實(shí)部8EXAMPLE7-6P337-33893.2
Time-harmonicElectromagneticsFieldvectorsthatvarywithspacecoordinatesandaresinusoidalfunctionsoftimecansimilarlyberepresentedbyvectorphasors(矢量相量)thatdependonspacecoordinatesbutnotontime.Asanexample,wecanwriteatime-harmonicE
fieldreferringtocostaswhereE(x,y,z)isavectorphasor
(矢量相量)thatcontainsinformationondirection(方向),magnitude(振幅),andphase(相位).Phasorsare,ingeneral,complexquantities.weseethat,ifE(x,y,z,t)istoberepresentedbythevectorphasor
E(x,y,z),thenE(x,y,z,t)/tandE(x,y,z,t)dtwouldberepresentedby,respectively,vectorphasors
jE(x,y,z)
andE(x,y,z)/j.Higher-orderdifferentiationsandintegrationswithrespecttowouldberepresented,respectively,bymultiplicationsanddivisionsofthephasor
E(x,y,z)byhigherpowersofj.1011已知正弦電磁場(chǎng)的場(chǎng)與源的頻率相同,因此可用復(fù)矢量形式表示麥克斯韋方程??紤]到正弦時(shí)間函數(shù)的時(shí)間導(dǎo)數(shù)為或因此,麥克斯韋第一方程可表示為上式對(duì)于任何時(shí)刻均成立,實(shí)部符號(hào)可以消去,即12瞬時(shí)值由相量值代替時(shí)間求導(dǎo)由jω代替Wenowwritetime-harmonicMaxwell’sequations(時(shí)諧麥克斯韋方程組)intermsofvectorfieldphasors(E,H)andsourcephasors(,J)inasimple(linear,isotropic,andhomogenous)mediumasfollows.13Thetime-harmonicwaveequations(時(shí)諧波動(dòng)方程)forEandHbecome,respectively,Thetime-harmonicwaveequationsforscalarpotentialVandvectorpotentialAbecome,respectively,Letiscalledthewavenumber.14Then
Considerthetimedelayfactor,forasinusoidalfunctionitleadstoaphasedelayof.
Weobtain15ThecomplexLorentzconditionis
Thecomplexelectricandmagneticfieldscanbeexpressedintermsofthecomplexpotentialsas
163.3
source-free(無(wú)源)fieldsinsimplemediaInasimple,nonconducting(非導(dǎo)電)source-freemediumcharacterizedby=0,J=0,=0,thetime-harmonicMaxwell’sequationsbecome
17whicharehomogeneousvectorHelmholtz’sequations(齊次矢量亥姆霍茲方程).andwaveequationsforAandV
becomeThetime-harmonicwaveequationsforEandHbecome,respectively,Letiscalledthewavenumber.18Ifthesimplemediumisconducting(0)(導(dǎo)電介質(zhì)),acurrentJ=Ewillflow,andtheequationshouldbechangedtowithTheotherthreeequationsinMaxwell’sequationareunchanged.Hence,allthepreviousequationsfornonconducting(非導(dǎo)電)mediawillapplytoconductingmediaifisreplacedbythecomplexpermittivity
c.Meanwhile,thereal(實(shí)數(shù))
wavenumber
kinthehelmholtz’sequationsshouldbechangedtoacomplex(復(fù)數(shù))
wavenumber:19Theratio’’/’
iscalledalosstangent(損耗正切)becauseitisameasureofthepowerlossinthemedium:Thequantityc
maybecalledthelossangle(損耗角).Amediumissaidtobeagoodconductor(良導(dǎo)體)if>>,andagoodinsulator(良絕緣體)if<<.Thus,amaterialmaybeagoodconductoratlowfrequencies(低頻)butmayhavethepropertiesofalossydielectricatveryhighfrequencies(高頻).201.Faraday’sLawofElectromagneticInductionReview212.Maxwell’sEquations3.ElectromagneticBoundaryConditionsTheintegralformThedifferentialform
SignificanceFaraday’slaw(電磁感應(yīng)定律)Ampere’scircuitallaw(全電流定律)Gauss’slaw(高斯定理)Noisolatedmagneticcharge(磁通連續(xù)性原理)224.PotentialFunctions5.WaveEquationsandTheirSolutions236.Time-HarmonicFields相量的模正弦量的幅值初位相復(fù)角頻率是已知?頻率相量乘以ejt,再取實(shí)部24dx25P.7-7P34926P.7-13P35127梯度運(yùn)算符合以下規(guī)則:C為常數(shù)散度運(yùn)算規(guī)則旋度運(yùn)算規(guī)則28P.7-25P3522930P.7-30P35331Theelectricfieldintensityinasource-freedielectric()regionisgivenas(V/m),whereangularfrequency,allareconstants.Find:Example.(1)Thephasorrepresentationofelectricfieldintens
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 包材軟管采購(gòu)合同范本
- 小學(xué)生女青春期課件
- 科學(xué)課堂上的學(xué)生中心教學(xué)建構(gòu)性教學(xué)方法的實(shí)踐
- 科技創(chuàng)新與知識(shí)產(chǎn)權(quán)的全球化挑戰(zhàn)與機(jī)遇
- 科技類班級(jí)特色活動(dòng)的策劃經(jīng)驗(yàn)談
- 2025年河南省永城市事業(yè)單位招聘40人歷年高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 2025年河南省總工會(huì)直屬事業(yè)單位招聘60人高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 2025年河南省衛(wèi)輝市事業(yè)單位招聘120人歷年高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 2025年河南省信陽(yáng)市商城縣警務(wù)輔助崗位招聘50人歷年高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 2025年河南洛陽(yáng)汝陽(yáng)縣事業(yè)單位招聘考試筆試高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 《傲慢與偏見》讀書匯報(bào)
- 上海??茖哟巫灾髡猩荚嚵?xí)題集④(含答案)
- 房屋信息查詢情況表((2022年-2023年))
- (演唱)在葡萄架下教學(xué)設(shè)計(jì)
- 室上性心動(dòng)過(guò)速的鑒別診斷課件
- 蛋白質(zhì)纖維-纖維化學(xué)與物理課件
- 婦科疾病 陰道炎 (婦產(chǎn)科學(xué)課件)
- 樂(lè)理講座:音程與和弦課件
- 馬工程西方經(jīng)濟(jì)學(xué)(第二版)教學(xué)課件-5
- 馬工程西方經(jīng)濟(jì)學(xué)(第二版)教學(xué)課件-7
- 皮膚性病學(xué)-真菌性皮膚病
評(píng)論
0/150
提交評(píng)論