




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
綠茶中的兒茶素使得機(jī)體更長壽、更健康中國是茶葉的故鄉(xiāng),也是茶文化的發(fā)源地。自從4700多年前第一杯茶水誕生以來,茶飲已成為全球最常見的飲料之一,僅次于水。無論是古籍還是現(xiàn)代醫(yī)學(xué)研究,都認(rèn)為飲用茶水有益健康。雖然所有的茶葉都來自同一種植物——茶樹,但因氧化程度的不同而決定了茶葉的品種。例如,綠茶是未經(jīng)氧化的,這也就意味著,綠茶含有最豐富的多酚類化合物兒茶素,它被認(rèn)為是一種強(qiáng)大的抗氧化劑,可以中和或防止由氧自由基引起的體內(nèi)氧化應(yīng)激,從而防止對細(xì)胞或DNA造成損傷。因此,綠茶具有延緩衰老的作用。然而,近日發(fā)表在《Aging》上的一項(xiàng)研究中,來自德國耶拿大學(xué)、瑞士蘇黎世聯(lián)邦理工學(xué)院(ETH)和華中農(nóng)業(yè)大學(xué)的研究人員得出了一個(gè)顛覆性的結(jié)論:綠茶中的兒茶素非但沒有抑制氧化應(yīng)激,反而在短期內(nèi)促進(jìn)了氧化應(yīng)激。愛喝綠茶的先別慌,讓我們來看看到底是怎么回事。此前的臨床試驗(yàn)和流行病學(xué)研究都表明,飲用綠茶對健康有益,包括降血壓、降血糖、降血脂和減肥等。綠茶葉中含量最豐富的多酚類化合物是表沒食子兒茶素沒食子酸酯(EGCG)、表兒茶素沒食子酸酯(ECG),它們占綠茶兒茶素總量的70%。在各種模式生物中進(jìn)行的實(shí)驗(yàn)表明,由于代謝適應(yīng)和增強(qiáng)對活性氧(ROS)的抵抗力,綠茶兒茶素有助于延長壽命。然而,綠茶兒茶素在哺乳動(dòng)物中的生物利用度較差,使得人類口服后不太可能達(dá)到這個(gè)濃度。盡管如此,一些獨(dú)立的臨床試驗(yàn)證實(shí),飲用綠茶可以改善各種健康生理指標(biāo)。在服用4.5克無咖啡因的綠茶固體后,人體內(nèi)EGCG、ECG和表兒茶素(EC)的最大血漿濃度達(dá)到了2.5μM。在這項(xiàng)研究中,研究人員就測試了2.5μM的濃度是否足以通過誘導(dǎo)秀麗隱桿線蟲(Caenorhabditiselegans)的有絲分裂反應(yīng)來促進(jìn)其壽命。研究人員發(fā)現(xiàn),EGCG和ECG在2.5μM的濃度下就能增強(qiáng)線蟲的體能并延長其壽命;而且,這個(gè)相對較低的劑量足以抑制線蟲的線粒體呼吸鏈活性。隨后,在分離的小鼠肝線粒體中的實(shí)驗(yàn)表明,EGCG和ECG抑制了線粒體復(fù)合物I的活性。EGCG給予6小時(shí)和ECG給予12小時(shí)后,復(fù)合物I被抑制的同時(shí),還出現(xiàn)短暫的活性氧(ROS)形成和ATP下降。事實(shí)證明,EGCG和ECG延長線蟲的壽命取決于能量代謝物AMP激活的激酶AAK-2和NAD依賴的蛋白去乙?;窼IR-2的存在。這些數(shù)據(jù)表明,由于瞬時(shí)AMP下降引起的后續(xù)能量缺乏觸發(fā)了線蟲的能量傳感器AAK-2和SIR-2.1。此外,ROS水平的暫時(shí)增加可能會促進(jìn)分裂原激活的蛋白激酶同源物PMK-1的活性,從而促進(jìn)相應(yīng)的信號級聯(lián)。這些信號通路通過增強(qiáng)ROS防御超氧化物歧化酶(SOD)和過氧化氫酶(CTL)的活性、增加了氧化應(yīng)激抵抗力,從而促進(jìn)健康和壽命來激發(fā)適應(yīng)性反應(yīng)。綜上所述,抑制線粒體復(fù)合體I再次被證明是促進(jìn)壽命延長途徑的有力工具。該研究通訊作者、ETH健康科學(xué)與技術(shù)系能量代謝中心MichaelRistow教授說:“這意味著綠茶兒茶素實(shí)際上不是抗氧化劑,而是一種促氧化劑,可以激發(fā)機(jī)體提高自我保護(hù)能力,這個(gè)作用與接種疫苗類似?!盧istow對這種機(jī)制的作用并不感到驚訝。他的研究團(tuán)隊(duì)早在2009年就表明,運(yùn)動(dòng)促進(jìn)健康的原因在于短期內(nèi)增加氧化應(yīng)激,從而提高身體的防御能力。減少熱量攝入也有同樣的效果,這已經(jīng)在動(dòng)物實(shí)驗(yàn)中多次得到證實(shí)。喂食低熱量食物的小鼠比喂食正常高熱量食物的小鼠活得更長。Ristow解釋說:“所以綠茶中的兒茶素也會以類似的方式發(fā)揮作用,這對我來說是有道理的?!彼硎荆@項(xiàng)研究結(jié)果同樣適用于人類。生物中和氧自由基的基本生化過程在進(jìn)化史上是保守的,存在于從單細(xì)胞酵母到人類的一切生物中。Ristow自己每天都喝綠茶,但他建議不要服用綠茶提取物或濃縮物。他說:“達(dá)到一定的濃度后,它就會變成有毒物質(zhì)。高劑量兒茶素會抑制線粒體,導(dǎo)致細(xì)胞死亡,這在肝臟中尤其危險(xiǎn)。任何過量攝入這些多酚的人都有損傷器官的風(fēng)險(xiǎn)。”抗氧化?綠茶中的兒茶素竟是通過氧化應(yīng)激起效Aging:綠茶中的兒茶素單體ECG和EGCG被認(rèn)為是抗氧化劑,但最新研究發(fā)現(xiàn)它們不但不抗氧化,反而會在短時(shí)間內(nèi)提高氧化應(yīng)激水平,導(dǎo)致細(xì)胞和生物體的防御能力增強(qiáng),使得機(jī)體更長壽、更健康EGCGandECGpromotelifespan,fitness,andstressresistancewhenappliedatlowdosesOralabsorptionandabsolutebioavailabilityofgreenteacatechinsarelowinmammals[12],reachingtotalmaximumplasmaconcentrationsof2.5μMinhumansafteradministrationofmaximal4.5gofdecaffeinatedgreenteasolids[14].However,severalindependentclinicaltrialsreportedbeneficialeffectsofEGCGandECGregardinghealthparameters[1–4].Therefore,wehypothesizedthatlowerconcentrationsofEGCGandECGthanthosestudiedpreviously[11]arestilleffectiveandimprovelifespanandstressresistancein
C.elegans.
Indeed,EGCGandECGappliedataconcentrationof2.5μMweresufficienttosignificantlyextendthemediumlifespan(Table1)of
C.elegans
from28.8±0.3to30.8±0.1days(Figure1A)andfrom28.8±0.3to30.6±0.3days(Figure1B),respectively,causinganextensionof6.9%forEGCGand6.2%forECGtreatment.Themaximumlifespan(Table1)wasextendedfrom35.7±0.6to36.9±0.1daysbyEGCGtreatment(Figure1A)andfrom35.7±0.6to37.1±0.3daysbyECGtreatment(Figure1B),reachinganextensionof3.4%forEGCGand3.9%forECG.Next,wetestedwhetherprolongedlifespanalsocorrelateswithimprovedfitnessandstressresistance.Locomotionisdependentonfunctionalmusclemass,connectivetissues,andneuronalsignaling.Consequently,motilityisasuitablemarkerforhealth[15].EGCGandECGtreatmentimprovedthenematodes’motilityafter7daysofincubation(Figure1C).Moreover,treatmentof
C.elegans
withECGC(Figure1D)andECG(Figure1E)for7dayssignificantlyincreasedstressresistance(Table2)tothefreeradicalgeneratorparaquat.Consequently,EGCGandECGenhancedfitnessandstressresistance,bothcrucialparametersforhealth.Table1.Lifespanresultsandstatisticalanalysis.Strains,CompoundsMaxlifespanindays±SD(10th
percentile)Mediumlifespanindays±SD(50th
percentile)Numberofexperiments(n)P
valueversuscontrolNumberofnematodesN2DMSO35.7±0.628.8±0.3182831N2EGCG36.9±0.130.8±0.118<0.00012842N2ECG37.1±0.330.6±0.315<0.00012777N2BHA36.4±0.628.9±0.490.38381548N2BHA+EGCG36.0±0.329.2±0.490.31141581N2BHA+ECG35.9±0.529.6±0.460.66821451aak-2(ok524)
DMSO24.220.9±0.23462aak-2(ok524)
EGCG24.4±0.220.5±0.330.1015465aak-2(ok524)
ECG24.6±0.720.4±0.430.9876452sir-2.1(ok434)
DMSO28.6±0.124.3±0.43400sir-2.1(ok434)
EGCG28.9±1.224.5±0.330.1858355sir-2.1(ok434)
ECG28.2±0.523.7±0.130.24436pmk-1(km25)
DMSO34.9±0.627.9±0.43548pmk-1(km25)
EGCG35.5±1.528.2±1.130.7759567pmk-1(km25)
ECG35.3±0.728.0±0.330.7363581skn-1(zu67)
DMSO16.5±0.514.1±0.16424skn-1(zu67)
EGCG17.0±0.214.2±0.160.5286432skn-1(zu67)
ECG16.8±0.214.360.4823440daf-16(mgDF47)
DMSO22.5±0.320.1±0.13660daf-16(mgDF47)
EGCG22.2±0.219.830.029774daf-16(mgDF47)
ECG21.7±0.619.4±0.23<0.0001707sod-2(gk257)
DMSO33.3±0.427.2±0.43730sod-2(gk257)
EGCG33.1±0.427.5±0.430.9525788ctl-2(ok1137)
DMSO32.5±0.426.8±0.73602ctl-2(ok1137)
ECG32.9±0.527.2±0.430.1718614Figure1.
Increasedlifespan,locomotionactivity,andstressresistanceafterEGCGandECGtreatment.
TherepresentativeoutcomeoflifespanassayofN2wild-typenematodesinthepresenceof2.5μMEGCGversusDMSO.(A)TherepresentativeoutcomeoflifespanassayofN2wild-typenematodesinthepresenceof2.5μMECGversuscontrol.(B)LocomotionquantificationforN2wild-typenematodesafter7daysexposuretoDMSO,2.5μMEGCG,or2.5μMECG.(C)Therepresentativeoutcomeofthesurvivalanalysis(h)ofN2nematodesin50mMparaquatsolutionafter7daysofpretreatmentwithEGCG(D)orECG(E)incomparisontowormspretreatedwithDMSO.
P-valuesareasindicatedinthegraphs.See
Table1
and
Table2
forcorrespondingdetaileddataandstatisticalanalysesoflifespanassaysandofparaquatstressassay,respectively.Table2.Paraquatstressassayresultsandstatisticalanalysis.TreatmentsNumberofexperiments(n)P
valueversuscontrolNumberofnematodesN2DMSO694N2EGCG6<0.000192N2ECG6<0.000193ComplexIinhibitionbyEGCGandECGhampersmitochondrialrespirationtemporarilyandinducesatransientROSsignalPreviousreportshavesuggestedthatgreenteacatechinsinduceSIRT1/SIR-2.1andFOXO/DAF-16signalingbyaninitialincreaseinROSlevels.However,theROSsourcehasremainedunidentifiedinpreviousreports[11].WecouldconfirmthatROSisessentialforlifespanextensionprovokedbycatechins,showingthattheantioxidantbutylatedhydroxyanisole(BHA)preventsthelife-prolongingeffectofECGC(Figure2A)andECG(Figure2B).Moreover,wefoundthat25μMofEGCGandECGsignificantlyhampertheactivityofcomplexIinmurinelivermitochondria(Figure2C)andthemitochondrialrespirationinmitochondriaisolatedfromratliver(Figure2D).Thesefindingsareinlinewithreducedmitochondrialrespirationin
C.elegans
after6–12hoursexposureto2.5μMEGCG(Figure2E)orECG(Figure2F).Notably,mitochondrialrespirationrecoveredafter24hand120hoftreatmentwithEGCG(Figure2E)andECG(Figure2F),pointingtocompensationofaninitiallyimpairedmitochondrialfunction.ThetimecourseofinitialdiminutionandthesubsequentrecoveryofmitochondrialrespirationcorrelateswithROSlevels,whichincreasedsignificantlyafter6hofECGC(Figure2G)and12hofECG(Figure2H)administrationanddroppedsignificantlyafter24hand120hofcatechintreatment(Figure2G,
2H).Figure2.
EGCGandECGinhibitcomplexI,whichresultsinatemporaryhamperingofmitochondrialrespirationandaboostinROSproduction.
TherepresentativeoutcomeoflifespanassayofN2wildtypenematodesinthepresenceof2.5μMEGCGco-appliedwithanantioxidant;DMSOvs.2.5μMEGCGvs.10μMBHAvs.2.5μMEGCGincombinationwith10μMBHA.(A)TherepresentativeoutcomeoflifespanassayofN2wildtypenematodesinthepresenceof2.5μMECGco-appliedwithanantioxidant;DMSOvs.2.5μMECGvs.10μMBHAvs.2.5μMECGincombinationwith10μMBHA.(B)ComplexIactivityinmurinelivermitochondriaaftertreatmentwithDMSO,25μMEGCGor25μMECG.(C)MitochondrialrespirationofratlivermitochondriaaftertreatmentwithDMSO,25μMEGCGor25μMECG.(D)MitochondrialrespirationofN2wild-typenematodesaftertreatmentwithDMSOor2.5μMEGCGfor6h,24h,or120hmeasuredasoxygenconsumptionrateandnormalizedtoproteincontent.(E)MitochondrialrespirationofN2wild-typenematodesaftertreatmentwithDMSOor2.5μMECGfor12h,24h,or120h,measuredasoxygenconsumptionrateandnormalizedtoproteincontent.(F)ROSproductionofN2wild-typenematodesaftertreatmentfor6h,24h,or120hwith0.1%DMSOor2.5μMEGCG.(G)ROSproductionofN2wild-typenematodesaftertreatmentfor6h,24h,or120hwith0.1%DMSOor2.5μMECG.(H)
P-valuesareasindicatedinthegraphs.See
Table1
forcorrespondingdetaileddataandstatisticalanalysesoflifespanassays.AMPKandSIRT1areessentialforcatechin-inducedlifespanextensionInhibitionofcomplexIreducesNADH’soxidationtoNAD+,necessaryforglyceraldehyde3-phosphateconversionto1,3-bisphosphoglycerateduringglycolysis.Consequently,reducedlevelsofNAD+hamperglycolysisandtheproductionofpyruvate,whichenterstheKrebscycletobeconvertedintowaterandCO2
[16].Inlinewiththesereports,ECGCreducedtheoxidationofradioactivelylabeledglucoseby20%,asshownbyimpairedproductionofthe
14C-labeledCO2
(Figure3A).ECGtreatmentalsotendedtoreducetheglucoseturnover.However,theeffectsremainednon-significant(Figure3A).ThetimecourseofmetabolicmanipulationbyEGCGandECGwasalsoreflectedinoverallATPlevels.Inlinewithcatechin-inducedinhibitionofmitochondrialrespiration(Figure2E,
2F)andglycolysis(Figure3A),overallATPlevelsdroppedafter6hofEGCG(Figure3B)and12hofECG(Figure3C)treatmentinnematodesbeforerecoveringafter24h.AlackofATP,resultinginahigherAMPtoATPratio,iswell-knowntoactivatetheAMP-dependentkinaseAMPK[17].The
C.elegans
homologofAMPK,AAK-2,isinvolvedinlifespanextensioninresponsetoimpairedglycolysis[18]andinsulin/IGF-1signaling[19].Indeed,EGCG(Figure3D)andECG(Figure3E)failedtoextendlifespanin
aak-2
deficientmutants.Notably,AMPKenhancesNAD+-dependenttypeIIIdeacetylasesirtuin1activitybyincreasingcellularNAD+levels[20].In
sir-2.1
defectivemutants,EGCG(Figure3F)andECG(Figure3G)didnotachievealifespanextension,provingthatEGCGandECGprolonglifespaninanAMPK-andSIRT1-dependentmanner.Thesefindingsalignwithpreviousreportsshowingthatcatechins’lifespanextensiondependsonAMPK,SIRT1,andFOXO[11].Figure3.
EGCGandECGinduceadropincellularATPlevelsandrequireAMPK/SIRT1signalingtoextendlifespan.14CO2
productionofN2wild-typenematodesaftertreatmentwith0.1%DMSO,2.5μMEGCGor2.5μMECGfortheindicatedtime.(A)ATPcontentforvariousincubationperiodsofN2wild-typenematodeswith0.1%DMSOor2.5μMEGCG.(B)ATPcontentfordifferentincubationperiodsofN2wild-typenematodeswith0.1%DMSOor2.5μMEGCG.(C)Therepresentativeoutcomeoflifespanassayof
aak-2
mutantstreatedwith0.1%DMSOversus2.5μMEGCG(D)or2.5μMECG.(E)Therepresentativeoutcomeoflifespanassayof
sir-2.1
mutantstreatedwith0.1%DMSOversus2.5μMEGCG(F)or2.5μMECG.(G)
P-valuesareasindicatedinthegraphs.See
Table1
forcorrespondingdetaileddataandstatisticalanalysesoflifespanassays.p38MAPK,NRF2,andFOXOarerequiredforthelifespanextensioninducedbycatechinsAsshownin
Figure2,EGCGandECGblockcomplexIactivityand,thus,induceatransientriseinROSlevels.ROS[21]andAMPK[22]arepotentialmediatorsofthep38MAPkinasepathways.Thehomologofthemammalianp38MAPK,PMK-1,hasbeenidentifiedasacrucialcomponentinthelifespanextensionof
C.elegans
[23,
24].Inlinewiththesepreviousreports,wefoundthatneitherEGCG(Figure4A)norECG(Figure4B)treatmentextendslifespanin
pmk-1
deficientmutants.Next,wetestedtheimpactofwhetherthetranscriptionfactorSKN1,thewormhomologofNRF2andadownstreamtargetofPMK1underconditionsofoxidativestress[25–27],isinvolvedinthelifespanextensionprovokedbycatechins.Again,noEGCG-(Figure4C)orECG-induced(Figure4D)lifespanextensioncouldbeobservedin
skn-1
mutantworms.DAF-16isthehomologofamammalianFOXOandisreportedtorespondtophysicalandenvironmentalstress[28].
daf-16
mutantwormsaresensitivetooxidativestressandhaveshortenedlifespans.Moreover,DAF-16canactivateorrepressthetranscriptionoftargetgenesinvolvedindauerformation,lifespan,stressresistance,andfatstorageof
C.elegans
[29].EGCGandECGdecreasedmeanlifespanin
daf-16
deficientnematodesfrom20.1±0.1to19.8days(Figure4E)andfrom20.1±0.1to19.4±0.2days(Figure4F),respectively.Themaximumlifespanwasdecreasedfrom22.5±0.3to22.2±0.2daysbyEGCGtreatment(Figure4E)andfrom22.5±0.3to21.7±0.6daysbyECGtreatment(Figure4F).TheseresultssuggestthatDAF-16isindispensableforEGCG’sandECG’slifespanextensionandshowthat
daf-16
deficientnematodesareespeciallypronetoaROSlevelriseinducedbycatechins.Figure4.
EGCGandECGmediatelifespanextensiondependentonPMK-1/p38MAPK,SKN-1/NRF2,andDAF-16/FOXO.
Therepresentativeoutcomeoflifespanassayof
pmk-1
mutantstreatedwith0.1%DMSOversus2.5μMEGCG(A)or2.5μMECG.(B)Therepresentativeoutcomeoflifespanassayof
skn-1
mutantstreatedwith0.1%DMSOversus2.5μMEGCG(C)or2.5μMECG.(D)Therepresentativeoutcomeoflifespanassayof
daf-16
mutantstreatedwith0.1%DMSOversus2.5μMEGCG(E)or2.5μMECG.(F)
P-valuesareasindicatedinthegraphs.See
Table1
forcorrespondingdetaileddataandstatisticalanalysesoflifespanassays.EGCGandECGinduceadaptiveresponsesinROShomeostasisandcellularmetabolismAMPK/SIRT1andp38MAPK/NRF2/FOXOsignalingcascadesareassociatedwithantioxidantdefensemechanisms[30].Themajorantioxidantenzymesin
C.elegans
includefivedistinctsuperoxidedismutases,convertingsuperoxidetohydrogenperoxide,andtwocatalases,whichensurethesubsequentconversionofhydrogenperoxidetowater[31].EGCGtreatmentsincreasedSODactivityafter24h(Figure5A)andCTLactivityafter7days(Figure5B).Meanwhile,ECGtreatmentsdidnotsignificantlyincreaseSODactivity(Figure5A)butincreasedCTLactivityafter24hand7days(Figure5B).TheenhancedactivityofSODandCTLcorrelateswiththesubsequentdropofROSlevelsafter24hofEGCGandECGtreatment.Notably,thelifespan-extendingeffectofEGCGandECGisdependentonSOD-2(Figure5C)andcatalase2(CTL-2)(Figure5D).Asshownin
Figure3,complexIinhibitionbyEGCGandECGwasalsoaccompaniedbyareductioninglucoseoxidation.Inlinewiththisfinding,thefatcontentwasfoundtobesignificantlylowerafter120hofEGCGorECGtreatment(Figure5E),pointingtoacatechin-inducedlong-termreprogrammingofcellularmetabolism.Figure5.
EGCGandECGinduceSODandCTLactivityandashiftinlipidmetabolisminthelongterm.
SOD(A)orCTL(B)activityaftertreatmentwith0.1%DMSO,2.5μMEGCGor2.5μMECGfor24hor7days.Therepresentativeoutcomeoflifespanassayof
sod-2
mutantstreatedwith0.1%DMSOor2.5μMEGCG.(C)Therepresentativeoutcomeoflifespanassayof
ctl-2
mutantstreatedwith0.1%DMSOor2.5μMECG.(D)TriglyceridecontentinN2wild-typenematodesaftertreatmentwith0.1%DMSO,2.5μMEGCGor2.5μMECGfor5days,normalizedtoproteincontent.(E)
P-valuesareasindicatedinthegraphs.See
Table1
forcorrespondingdetaileddataandstatisticalanalysesoflifespanassays.DiscussionGreenteaisoneofthemostwidelyconsumedbeveragesworldwide[32].Thepopularityofgreenteamakesitcrucialtostudyitsimpactonhealthandaging.AlthoughEGCG’sandECG’sbioavailabilityisrelativelylow[7,
8],consuming4cupsofgreenteadailyfor8weekssignificantlydecreasesbodyweight[33].Previousreportsalreadyreportedalifespanextensionin
C.elegans
aftertreatmentwith50–300μMEGCG[11].Here,weshowthatalready2.5μMofEGCGandECG,aconcentrationalsopotentiallyachievedaftergreenteaconsumption[14],aresufficienttoinduceanextensionoflifespanandincreasestressresistancebyadaptationalmechanisms.Inthismitohormeticresponse,EGCGandECGactinitiallyasprooxidantsbyprovokingaROSrise.SinceatransientROSburstinducesantioxidantdefensemechanisms,EGCGandECGdisplayantioxidantpropertiesinthelongterm.Inhigherconcentrations,EGCGandECGmightshowharmfuleffectsduetoexcessiveROSproduction.Thisphenomenongetsobviousinstudiesperformedoncancercells.Whiletheantioxidantpotentialofgreenteacatechinsinlowconcentrationswassuggestedasapotentialsolutiontopreventtumorigenesis[34,
35],higherdosagesofcatechinsmightserveasantitumoragentsduetotheinductionofoverwhelmingROSformationandapoptosis[36–41].Notably,EGCGwasmorepotentthanECGinhumancancercelllinesininducingcytotoxiceffects[33]andinhibitingcancercellmotility[42].Indeed,ittookjust6hforEGCG,but12hforECGtoaffectmitochondrialrespiration,ROS,andATPlevels.However,theimpactofthesecompoundswassimilarwhenappliedinthelongterm,yieldingsimilareffectsonlifespan,motility,andstressresistance.Besidestriggeringamitohormeticresponsethroughtheireffectsontranscriptionfactorsandenzymeactivities,catechinswerespeculatedtoexertdirectantioxidantpotentialbyscavengingROS[43,
44].Whileamodestincreaseintheplasmaantioxidantcapacityfollowinggreenteaconsumptionwasreported[43],thefractionofstructurallyintactcatechinsreachingtargettissuesisinsignificantcomparedtotheantioxidantpotentialduetointracellularglutathioneachievinglevelsof1–11mM[45–47].Besides,EGCGeveninducedhydrogenperoxideformationinthecellcultureandliquidNGMsystem[44–46].Moreover,hydrogenperoxidemimickedtheeffectofEGCGonsignalingpathways,whileantioxidantsabolishedtheimpactofcatechins[37,
41,
48–50].WecouldshowthatBHApreventedlifespanextensionbyEGCGandECG,suggestingthataninitialriseinROSlevelsisnecessarytoinduceadaptationalmechanismscausingimprovedantioxidantproperties.Previousstudiesalreadyrevealedincreasedhydrogenperoxidelevelsandadose-andtime-dependentdecreaseinglutathionelevelsincellculturemodelsafterapplying50μMofEGCG[43,
51].However,themechanismofhowEGCGandECGinduceROSformationwasnotdescribedsofar[11].Inthecurrentstudy,werevealedthatEGCGandECGinhibitcomplexIoftheETC.ExperimentsinratcerebellargranuleneuronshaveshownthatEGCGaccumulatesexplicitlyinmitochondria,reaching90–95%mitochondrialaccumulationofthispolyphenol[52].Thisfindingiswellalignedwiththeplethoraofliteraturedescribingpolyphenolsascompoundstargetingmitochondria[53,
54].Consequently,weisolatedmitochondriatoinvestigatetheimpactofEGCGandECGonthecomplexesofthemitochondrialETC.Isolatedmitochondriaareseparatedfromtheirnaturalenvironmentandsignalingprocesses,andtheisolationprocessbringstheriskofdamagingmitochondrialmembranesduetoshearforces[55].However,druguptakebymitochondriaisdependentontheintegrityoftheouterandinnermitochondrialmembrane,includingthefunctionoftransporterproteinsandcarriers[56].Since25μMofEGCGandECGwerenecessarytoachieveasignificantinhibitionofcomplexIactivityinmitochondriaisolatedfrommurineliversamplesandtohampermitochondrialrespirationinmitochondriaisolatedfromratliver,weassumethattheisolationprocessaffectedtheintegrityofmitochondrialmembranesand,thereby,mitochondria’spotentialtotakeupcatechinsefficiently.Besides,theisolationofmitochondriayieldsarelativelyhomogenouspopulationofsphericalorganelleswithdisorganizedcristaeanddilutedmatrixcontent.ThestructuralalterationsaffectETCactivityandmitochondrialrespirationrate[57].Weassumethatstructuralchangesincristaeorganizationduetotheisolationprocessmightbeanotherreasonwhy25μMofEGCGandECGwerenecessarytosignificantlyblockcomplexIactivityandmitochondrialrespirationrateinisolatedmitochondria.Inaddition,wepresentthatatemporaryhamperedmitochondrialrespirationgoesalongwithatransientriseinROSlevelsandabriefdropinATP,triggeringsignalingpathwaysassociatedwithlifespanextensionin
C.elegans.Ourfindingsalignwithreportsaboutthe
C.elegans
mutant
nuo-6(qm200),carryingamutationinaconservedsubunitofmitochondrialcomplexI(NUDF84).ThisspecificmutanthasreducedcomplexIfunction,increasedROSlevels[58],andaprolongedlifespan[59].ItwasalsospeculatedthatblockageofthecomplexIofthemitochondrialelectrontransportchaindelaysagingduetoslowedembryonicdevelopmentandlarvalgrowth,decreasedpumpinganddefecationrate,orareducedaccumulationofROSdamage[60–62].However,RNAi-inducedknockdownofthemitochondrialelectrontransportchain’scomplexesattheL3/L4stageissufficienttoinitiatelifespanextensionin
C.elegans.Atthisstage,mitochondriaarealreadyundergoingaperiodofdramaticproliferationandmassivemitochondrialDNAexpansion[63].Moreover,inhibitingrespiratorychaincomponentsduringadulthooddidnotprovokelifespanextensionanymo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 搬運(yùn)工勞動(dòng)協(xié)議書
- 2025年安徽交通職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫及答案參考
- 2025年安徽省銅陵市單招職業(yè)適應(yīng)性考試題庫及答案1套
- 2025年中小企業(yè)培訓(xùn)外包的實(shí)施策略研究
- 社交電商的網(wǎng)絡(luò)營銷模式與案例
- 化妝品廣告發(fā)布合同范本
- 醫(yī)院保潔工作合同范本
- 廚電供貨合同范本
- 合同范本收款人賬號
- 醫(yī)療牙科設(shè)備購銷合同范本
- 兒童期創(chuàng)傷量表
- 拗九節(jié)班會方案
- 2022年八大員的勞務(wù)員考試題及答案
- DLT5210.4-2018熱工施工質(zhì)量驗(yàn)收表格
- 醫(yī)院實(shí)習(xí)護(hù)士轉(zhuǎn)科表
- 2023年最新的郭氏宗祠的對聯(lián)大全
- 《中國古代文學(xué)史》宋代文學(xué)完整教學(xué)課件
- 新部編人教版四年級下冊道德與法治全冊教案(教學(xué)設(shè)計(jì))
- 物業(yè)服務(wù)企業(yè)市場拓展戰(zhàn)略規(guī)劃課件
- 2018年青海大學(xué)碩士論文格式模板
- 兒童跌倒評估量表(Humpty-Dumpty)
評論
0/150
提交評論