有向圖和無向圖教學(xué)課件_第1頁
有向圖和無向圖教學(xué)課件_第2頁
有向圖和無向圖教學(xué)課件_第3頁
有向圖和無向圖教學(xué)課件_第4頁
有向圖和無向圖教學(xué)課件_第5頁
已閱讀5頁,還剩55頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

離散數(shù)學(xué)CH7圖的基本概念1無向圖及有向圖圖論的起源圖論是組合數(shù)學(xué)的一個分支,它起源于1736年歐拉的第篇關(guān)于圖論的論文,這篇論文解決了著名的“哥尼斯堡七橋問題”從而使歐拉成為圖論的創(chuàng)始人哥尼斯堡七橋問題解決方式●萊昂哈德·歐拉(Leonhardeuler)在1735年圓滿地解決了這一問題,證明這種方法并不存在,也順帶解決了一筆畫問題。他在圣彼得堡科學(xué)院發(fā)表了圖論史上第一篇重要文獻(xiàn)。歐拉把實際的抽象問題簡化為平面上的點與線組合,每一座橋視為一條線,橋所連接的地區(qū)視為點。這樣若從某點出發(fā)后最后再回到這點,則這一點的線數(shù)必須是偶數(shù)圖論的起源歐拉最后給出任意一種河一橋圖能否全部走一次的判定法則。如果通奇數(shù)座橋的地方不止兩個,那么滿足要求的路線便不存在了。如果只有兩個地方通奇數(shù)座橋,則可從其中任何一地出發(fā)找到所要求的路線。若沒有一個地方通奇數(shù)座橋,則從任何地出發(fā),所求的路線都能實現(xiàn),他還說明了怎樣快速找到所要求的路線?!癫簧贁?shù)學(xué)家都嘗試去解析這個事例。而這些解析,最后發(fā)展成為了數(shù)學(xué)中的圖。拉定義一個圖,如果能夠從一點出發(fā),經(jīng)過每條邊一次且僅一次再回到起點,則稱為歐拉圖歐拉在論文中給出并證明了判

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論