




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Chapter2
DerivativesupdownreturnendChapter212.6
Implicitdifferentiation1)Explicitfunction:Thefunctionwhichcanbedescribedbyexpressingonevariableexplicitlyintermsofanothervariable(othervariables)aregenerallycalledexplicitfunction---forexample,y=xtanx,ory=[1+x2+x3]1/2,
oringeneraly=f(x).2)Implicitfunction:Thefunctionswhicharedefinedimplicitlybyarelationbetweenvariables--xandy--aregenerallycalledimplicitfunctions---suchasx2+y2=4,or7sin(xy)=x2+y3
or,ingeneralF(x,y)=0.Ify=f(x)satisfiesF(x,f(x))=0onanintervalI,wesayf(x)isafunctiondefinedonIimplicitlybyF(x,y)=0,orimplicitfunctiondefinedbyF(x,y)=0.updownreturnend2.6Implicitdifferentiation1)23)DerivativesofimplicitfunctionSupposey=f(x)isanimplicitfunctiondefinedbysin(xy)=x2+y3.Thensin[xf(x)]=x2+[f(x)]3.Fromtheequation,wecanfindthederivativeoff(x)eventhoughwehavenotgottentheexpressionoff(x).Fortunatelyitisnotnecessarytosolvetheequationforyintermsofxtofindthederivative.Wewillusethemethodcalledimplicitdifferentiationtofindthederivative.Differentiatingbothsidesoftheequation,weobtainthat[f(x)+xf'(x)]cos[xf(x)]=2x+3[f(x)]2f'
(x).Thenupdownreturnend3)Derivativesofimplicitfun3Example(a)Ifx3+y3=27,find
(b)
Findtheequationofthetangenttothecurve
x3+y3=28atpoint(1,3).updownreturnendExample(a)Ifx3+y3=27,fi4Example(a)If
x3+y3=6xy,findy'.
(b)
FindtheequationofthetangenttothefoliumofDescartes
x3+y3=6xyatpoint(3,3).updownreturnendExample(a)Ifx3+y3=6xy,f5Orthogonal:
Twocurvesarecalled
Orthogonal,
ifateachpointofintersectiontheirtangentlinesareperpendicular.Iftwofamiliesofcurvessatisfythateverycurveinonefamilyisorthogonaltoeverycurveintheanotherfamily,thenwesaythetwofamiliesofcurvesareorthogonaltrajectoresofeachother.Example
Theequationsxy=c(c0)representsafamilyofhyperbolas.AndtheTheequationsx2-y2=k(k0)representsanotherfamilyofhyperbolaswithasymptotesy=x.Thenthetwofamiliesofcurvesaretrajectoresofeachother.updownreturnendOrthogonal:Twocurvesarecal6Derivative
f'(x)ofdifferentiablefunctionf(x)isalsoafunction.Iff'(x)isdifferentiable,thenwehave[f'
(x)]'.Wewilldenoteitbyf'
'
(x),i.e.,f'
'(x)=[f'
(x)]'.Thenewfunctionf
'
'(x)iscalledthesecondderivativeoff(x).Ify=f(x),wealsocanuseothernotations:
Similarlyf'
'
'(x)=[f''(x)]'iscalledthethirdderivativeoff(x),and2.7
HigherderivativesupdownreturnendDerivativef'(x)ofdifferent7Andwecandefinef'
'
'
'(x)=[f'
'
'(x)]'.Fromnowoninsteadofusingf'
'
'
'(x)weusef(4)(x)torepresentf
'
'
'
'(x).Ingeneral,wedefine
f(n)(x)=[f(n-1)(x)]',whichiscalledthenthderivativeoff(x).Wealsoliketousethefollowingnotations,ify=f(x),Example
Ify=x4-3x2+6x+9,findy
',y
'',y
''',y(4).updownreturnendExample
Iff(x)=,findf(n)(x).
Example
Iff(x)=sinx,g(x)=cosx,findf(n)(x)andg(n)(x).
Example
Findy'',ifx4+y3=x-y.Andwecandefinef'''82.8
Relatedrates(omitted)2.8Relatedrates(omitted)92.9
Differentials,LinearandQuadraticApproximationsDefinition:
Letx=x-x0,f(x)=f(x)-f(x0).IfthereexistsaconstantA(x0)whichisindependentofxandxsuchthatf(x)=A(x0)x+B(x,x0)where
B(x,x0)satisfies.ThenAxiscalleddifferentialoff(x)atx0.GenerallyAxisdenotedbydf(x)|x=x0
=A(x0)x.Replacingx0byx,thedifferentialisdenotedbydf(x)anddf(x)=A(x)x.updownreturnend2.9Differentials,Linearand10Proof:Fromthedefinition,Corollary:Ifthedifferentialoff(x)isdf(x)=A(x)x,thenf(x)isdifferentiableandA(x)=f
'(x).Corollary:(a)Iff(x)=x,thendx=df(x)=x.
(b)Iff(x)isdifferentiable,thendifferentialoff(x)existsanddf(x)=f'(x)dx.updownreturnendProof:Fromthedefinition,Cor11Example(a)
Finddy,ify=x3+5x4.
(b)Findthevalueofdywhenx=2anddx=0.1.Solution:Geometricmeaningofdifferentialoff(x),df(x)=QS
f(x)=RSxoxyPtSRQdx=xdyy=f(x)Asx=dxisverysmall,
y=dy,i.e.,f(t)-f(x)
f'(x)t.updownreturnendExample(a)Finddy,ify=x12ExampleUsedifferentialstofindanapproximate(65)1/3.Fromdefinitionofthedifferential,wecaneasilygetIff(x)isdifferentiableatx=a,andxisveryclosedtoa,thenf(x)
f(a)+f'(a)(x-a).TheapproximationiscalledLinearapproximationortangentlineapproximationoff(x)ata.AndfunctionL(x)=f(a)+f'(a)(x-a)iscalledthelinearizationoff(x)ata.updownreturnendExampleUsedifferentialstof13Example
Findthelinearizationofthefunctionf(x)=(x+3)1/2andapproximationsthenumbers(3.98)1/2and(4.05)1/2.updownreturnendExampleFindthelinearizati14Quadraticapproximationtof(x)nearx=a:Supposef(x)isafunctionwhichthesecondderivativef
''(a)exists.P(x)=A+Bx+Cx2istheparabolawhichsatisfiesP(a)=f(a),P'(a)=f'(a),andP''(a)=f
''(a).Asxisveryclosedtoa,theP(x)iscalledQuadraticapproximationtof(x)neara.Corolary:SupposeP(x)=A+Bx+Cx2istheQuadraticapproximationtof(x)neara.Then
P(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)2/
2.IfP(x)isthequadraticapproximationtof(x)nearx=a,thenasxisveryclosedtoa,P(x)f(x).Thatis
f(x)
f(a)+f'(a)(x-a)+f''(a)(x-a)1/2/2.updownreturnendQuadraticapproximationtof(x15Example
Findthequadraticapproximationtof(x)=cosxnear0.updownreturnendExampleFindthequadratic16Example
Find
thequadraticapproximationtof(x)=(x+3)1/2nearx=1.updownreturnendExampleFindthequadraticapp17Themethodistogiveawaytogetaapproximationtoarootofanequation.2.10
Newton’smethod(tobeomitted)Supposef(x)isdefinedon[a,b],f'(x)doesnotvalue0.Letx0[a,b],f(a)f(b)<0.Andx1=x0-,x2=x1-.Keepingrepeatingtheprocess(xn=xn-1-),weobtainasequenceofapproximationsx1,x2,...,xn,......If,thenristherootoftheequationf(x)=0.updownreturnendThemethodistogiveawayto18Example
Startingwithx1=2,findthethirdapproximationx3totherootoftheequationx3-2x-5=0.updownreturnendExampleStartingwithx1=2,f192.1
DerivativesWedefinedtheslopeofthetangenttoacurvewithequationy=f(x)atthepointx=atobeGenerallywegivethefollowingdefinition:updownreturnend2.1DerivativesWedefinedthe20Definition:Thederivative
ofafunctionfatanumbera,denotedbyf′(a),isifthislimitexists.Thenwehave:updownreturnendDefinition:Thederivativeof21Example
Findthederivativeofthefunctiony=x2-8x+9ata.Geometricinterpretation:Thederivativeofthefunctiony=f(x)ataistheslopeoftangentlinetoy=f(x)at(a,f(a)).Thelineisthrough(a,f(a)).Soiff′(a)exists,theequationofthetangentlinetothecurvey=f(x)at(a,f(a))isy-f(a)=f′(a)(x-a).updownreturnendExampleFindthederivativeof22Example
Findtheequationofthetangentlineofthefunctiony=x2-3x+5atx=1.Inthedefinitionifwereplaceabyx,thenweobtainanewfunctionf′(x)whichisdeducedfromf(x).updownreturnendExampleFindtheequationof23Example
Iff(x)=(x-1)1/2,findthederivativeoff.Statethedomainoff′(x).ExampleFindthederivativeoffif
1-x
f(x)=2+xOthernotations:Ify=f(x),thentheothernotationsarethatf′(x)=y′====Df(x)=Dxf(x).updownreturnendExampleIff(x)=(x-1)1/2,find24ThesymbolDandd/dxarecalleddifferentialoperators.Wealsousethenotations:DefinitionAfunctionfiscalleddifferentiableataiff′(a)exists.Itisdifferentiableonanopeninterval(a,b)[or(a,+)or(-,b)]ifitisdifferentiableateverynumberintheinterval.Example
Whereisthefunctionf(x)=|x|isdifferentiable?updownreturnendThesymbolDandd/dxarecall25Theorem:
Iff(x)isdifferentiableata,thenf(x)iscontinuousata.(Theconverseisfalse)(3)thepointsatwhichthecurvehasaverticaltangentline,suchas,f(x)=x1/3,atx=0.(1)thepointsatwhichgraphofthefunctionfhas“corners”,suchasf(x)=|x|atx=0;(2)thepointsatwhichthefunctionisnotcontinuous,suchas,thefunction,definedasf(x)=2xforx1,and3xforx<1,atx=1;ThereareseveralcasesafunctionfailstobedifferentiableupdownreturnendTheorem:Iff(x)isdifferenti262.2
Differentiation1).TheoremIffisaconstantfunction,f(x)=c,thenf′(x)=(c)′=0,i.e.,=0.updownreturnend2.2Differentiation1).Theorem272).ThepowerruleIff(x)=xn,wherenisapositiveinteger,thenf′(x)=nxn-1,xn=nxn-1.Example
Iff(x)=x100,findf′(x).updownreturnend2).ThepowerruleIff(x)=xn283)TheoremSupposecisaconstantandf′(x)andg′(x)exist.ThenExampleIff(x)=x50+x100,findf′(x).(c)(f(x)-g(x))′existsand(f(x)-g(x)′=f′(x)-g′(x).(b)(f(x)+g(x))′existsand(f(x)+g(x)′=f′(x)+g′(x);(a)(cf(x))′existsand(cf(x))′=cf′(x);updownreturnend3)TheoremSupposecisaconst294)ProductruleSupposef′(x)andg′(x)exist.Then
f(x)g(x)isdifferentiableand[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x).Example
Iff(x)=(2x5)(3x10),findf′(x).updownreturnend4)ProductruleSupposef′(x)304)QuotientruleSupposef′(x)andg′(x)existandg(x)0,thenf(x)/g(x)isdifferentiableand[f(x)/g(x)]′=[f′(x)g(x)-f(x)g′(x)]/[g(x)]2.Example
Iff(x)=,findf′(x).x2+2x-5x3-6updownreturnend4)QuotientruleSupposef′(x312).Thepowerrule(generalversion)Iff(x)=xn,wherenisanyrealnumber,thenf′(x)=nxn-1,,i.e.,xn=nxn-1.Example
Iff(x)=x,findf′(x).Ifg(x)=x1/2,g′(x)=?updownreturnendExample
Differentiatethefunctionf(t)=(1-t)t1/3.Tableofdifferentiationformulas(inpaper119)2).Thepowerrule(generalve322.3
RateofchangeintheEconomicsSuppose
C(x)isthetotalcostthatacompanyCx=C(x2)-C(x1)
x2-x1=C(x1+x)-C(x1)
xaverageofchangeofthecostistheadditionalcostisC=C(x2)-C(x1),andthenumberofitemsproducedincreasedfromx1tox2,ThefunctionCiscalledacostfunction.Iftheincursinproducingxunitsofcertaincommodity.updownreturnend2.3RateofchangeintheEcon33Thelimitofthisquantityasx0,iscalledthemarginalcostbyeconomist.Marginalcost=Takingx=1andnlarge(sothatxissmallcomparedton),wehaveC'(n)C(n+1)-C(n).Thusthemarginalcostofproducingnisapproximatelyequaltothecostofproducingonemoreunit[the(n+1)stunit].updownreturnendThelimitofthisquantityas342.4
Derivativesoftrigonometricfunctions(1)Theorem
Proof:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 度農(nóng)業(yè)供應(yīng)鏈合同:農(nóng)副產(chǎn)品
- 度工程借款合同范本
- 設(shè)計(jì)公司內(nèi)部培訓(xùn)合同樣本
- 標(biāo)準(zhǔn)勞動(dòng)合同模板合同
- 委托代理合同(公民類)范本
- 飾品定制合同范本
- 短期租賃合同格式
- 地下車庫車位承包合同轉(zhuǎn)讓協(xié)議
- 設(shè)備定期保養(yǎng)合同范文
- 大學(xué)生創(chuàng)新創(chuàng)業(yè)項(xiàng)目合同
- 腦卒中-腦卒中的康復(fù)治療
- 2024至2030年中國超聲波加工機(jī)床行業(yè)深度調(diào)研及發(fā)展預(yù)測報(bào)告
- 疫情統(tǒng)計(jì)學(xué)智慧樹知到答案2024年浙江大學(xué)
- 三方資金轉(zhuǎn)換協(xié)議書范本
- 2024年對口升學(xué)真題模擬語文試卷及答案十四
- 2024年積分制管理實(shí)施方案及細(xì)則
- CJJ6-2009 城鎮(zhèn)排水管道維護(hù)安全技術(shù)規(guī)程
- 新媒體營銷:營銷方式+推廣技巧+案例實(shí)訓(xùn) 微課版 第2版 思考與練習(xí)參考答案
- 2024年04月國家藥品監(jiān)督管理局藥品審評(píng)檢查長三角分中心招考聘用筆試筆試歷年典型考題及考點(diǎn)研判與答案解析
- 《互聯(lián)網(wǎng)金融》教案
- 2024年煤礦防突證考試題庫及答案
評(píng)論
0/150
提交評(píng)論