




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
WhytheUnitedStatesNeedstoSupportNear-TermQuantumComputingApplications
Asquantumcomputinghasthepotentialtotranscendthecurrentcomputationalboundariesthathavehadatransformationalimpactontheeconomyandsociety,beingaleaderinthistechnologyisofstrategiceconomicandsocialimportancetotheUnitedStates.
ByHodanOmaar|April27,2021
Quantumcomputingleveragesprinciplesfromquantummechanics,abranchofphysicsconcernedprimarilywiththeuniquebehaviorsofsubatomicparticlessuchaselectronsandphotons,toenablenew,extremelypowerfulcomputingarchitectures.Quantumcomputersusequantumbits(qubits),whichoperateaccordingtothequantumlawsof“superposition”and“entanglement,”thatenablethemtodothingstraditionalcomputerscannot.Becausequantumcomputingisstillearlyinitsdevelopmentphase,manyassumethatpracticalapplicationsarestillyearsaway.Inreality,asthisreportdocuments,organizationsarealreadyusingquantumcomputerstodayinreal-worldapplications.Asothernationsrapidlyscaleuptheirinvestmentstodevelopandusequantumcomputing,U.S.policymakersshouldensuretheUnitedStatesremainsaleader.Inparticular,investinginnear-termquantumcomputingapplicationswouldbolsterthedevelopmentoflonger-termusecasesofthetechnology,therebyhelpingtocementU.S.economiccompetitivenessandprotectnationalsecurity.
INTRODUCTION
Recentadvancesinquantumcomputingtechnologieshaveledtoawaveofinterest,bringingwithithypeandconfusionaboutboththepotentialofquantumcomputinganditscurrentstatus.Whilelarge-scalequantumcomputerscould,intheory,conductsuchfeatsasdecryptingcurrentcryptographicciphers,inreality,quantumtechnologiesarestillintheveryearlystages.JohnPreskill,aprofessoroftheoreticalphysicsatCaltechUniversityandaleadingscientistinquantumcomputing,noted—in2018that“weareenteringapivotalnewerainquantumtechnology”anerahereferredtoasthe“NISQera.”NISQstandsfornoisyintermediate-scale
CENTERFORDATAINNOVATION
1
quantumtechnologyandreferstothefactthatthesystemsthatwillbeavailableoverthenextfewyears,willberelativelysmallinsize,andhaveimperfections(ornoise)thatwilllimitwhattheyareabletoachieve.
Overcomingtechnicalchallengesonthepathtowardlarge-scalequantumcomputerswilldependontheabilitytoscalethenumberofqubitsinquantumsystems,muchlikemodernclassicalcomputershavedependedonthegrowthinthenumberoftransistorsinsuperconductingchips.Thecurrententhusiasmforquantumcomputingcouldleadtoavirtuouscycleofprogress,asthesemiconductorindustryhasalreadyseen,butonlyifnear-termapplicationsforthequantumcomputingtechnologiesunderdevelopmentaresuccessful.TheU.S.governmentcanbestsupportthescalingofcurrentquantumtechnologiesbyfosteringacommercialmarketfortheminthenearterm.
Currentquantumdevicescanalreadysolveproblemsinanarrayofapplicationareas,suchashealthcare,manufacturing,transportation,andtheenvironment.Researchershaveidentifiedseveralotherpotentialapplicationareas,butthesefindingsremainintheresearchspace.Toensurequantumresearchiseffectivelytranslatedintoreal-worldapplications,Congressshouldprovide$500millioninfundingover5yearsforacademicresearchprojectsthathavenear-termapplicationstoworkwithindustryonresearchanddevelopment(R&D).Ideally,thisprogramwouldencourageandsupportresearchprojectsthatalignwithregionaleconomicdevelopmentgoalsbyfosteringcollaborationandpartnershipsbetweenuniversities,localbusinesses,andstateandlocalgovernments.
Theprovenadvantagesofusingquantumcomputersforoptimizationproblemssuggestthatthesesystemsmayalsohelpsolveclassificationproblemsbyimprovingartificialintelligence(AI)models.AItechnologies,suchasmachinelearning,deeplearning,neuralnetworks,andcomputervision,relyontheprocessingoflargeamountsofdatatoidentifypatterns.WhileclassicalsystemscanuseparallelismtotrainAImodelsonlargedatasets,somedatasetsaretoolargeortoocomplextobesolvedefficiently.Quantumcomputingcouldhelpaddressthischallenge.Quantumsystemsusequantumprinciplestocreatenon-classicalcorrelationsbetweendatapoints(calledentanglement),whichsuggeststheymightalsobeabletorecognizehighlycomplexrelationshipsindatasetsthatclassicalsystemscannot.Google’sAIQuantumteamisalreadyexamininghownear-termquantumcomputerscanimproveneuralnetworks,whicharealgorithmsthatmimicthewaythehumanbrainrecognizesrelationshipsbetweendifferentdatasets.
1
Becausequantumcomputersarehighlyspecialized,difficulttomaintain,andexpensivetodevelop,mostuserswilllikelyaccessthesesystemsthroughcloud-basedsolutions.Indeed,theprivatesectorisalreadyofferingcloud-basedaccesstoquantumcomputing,suchasAmazon
CENTERFORDATAINNOVATION
2
BraketandMicrosoftAzureQuantum,thatallowsuserstolearn,build,anddeploysolutionsusingthelatestquantumcomputinghardware.
However,thecostofquantumcomputingmaybetoohighformanyacademicresearchersandthuslimittheirabilitytodevelopfuturetalentinthefieldandapplyquantumcomputingsolutionstoongoingwork.Toaddressthisproblem,CongressshouldestablishaNationalQuantumResearchTaskForcetoprovideacademicresearcherswithaffordableaccesstohigh-endquantumcomputingresourcesinasecurecloudenvironment,aswellasthenecessarytrainingtheyneedtomakethemostofit.ThistaskforcecouldbeanalogoustotheAIresearchtaskforcethatwasestablishedaspartoftheNationalAIResearchResourceTaskForceActof2020andconsistofmembersfromacademia,government,andindustry.
2
Theirgoalshouldbetodeveloparoadmapforbuilding,deploying,funding,andgoverninganationalquantumcomputingresearchcloudthatcanaccelerateaccesstoquantumcomputingforresearchinthepublicinterest.TheNationalQuantumResearchTaskForceshouldalsoensureitconsidershowtoprovideequitableaccesstoquantumcomputingatHistoricallyBlackCollegesandUniversities(HBCUs)andMinorityServingInstitutions(MSIs).
TheU.S.governmentitselfshouldplayaroleinexploringquantumapplications,notonlytobettersolveagency-specificproblemsbutalsotosignalthebenefitsofdoingsototheprivatesector.Tothisend,theOfficeofScienceandTechnologyPolicy(OSTP)shouldissueaquantumchallengethatrequireseveryfederalagencytoidentifyatleasttwoexistingusecasesforwhichtheycanusequantumcomputing.Forinstance,theDepartmentofTransportation(DOT)couldidentifywaysquantumcomputingcouldhelpoptimizepublictransportationacrosscities.But,sincethisreliesonaccesstomobilitydatathatisoftenheldbyprivatecompanies,DOTshouldestablishaplatformthataggregatesandcentralizesmobilitydataacrosscities,whichpublicandprivateplayerswouldcontributeto.
Finally,eventhoughthedevelopmentofalarge-scalequantumcomputercapableofbreakingcryptographicprotocolsisatleastadecadeaway,Congressshouldconsiderincentivizingpost-quantumcryptographytransition(PQC)inthepublicandprivatesectorsthroughmechanismssuchasadedicatedfundtosupportstateandlocalgovernmentsintheirtransitioneffortsandacertificationschemeforcompaniesthatimplementPQCprotocols.Asthedevelopmentofquantumcomputingtechnologieswilllikelybecomeglobalizedindustries,theNationalQuantumCoordinatingOffice(NQCO)shouldpublishareportoutliningwhatthequantumsupplychainlooksliketodayandwhererisksarelikelytoemergetobetterinformfutureeconomicandnationalsecuritypolicies.
CENTERFORDATAINNOVATION
3
QUANTUMCOMPUTINGISAMOREGENERALFORMOFCLASSICALCOMPUTING
Abasicelectroniccomputerismadeupofcircuits,whichareclosedloopsthroughwhichcurrentmoves,andtransistors,whicharemicroscopicdevicesthatopenandclosecircuitstocommunicateelectricalsignals.
3
Together,circuitsandtransistorsformgates,whichactaselectronicswitchesthatperformsuchfunctionsasamplifyingorswitchingoffthesesignals.
Electricalsignalsareanalog,whichmeanstheirvalueschangesmoothlyovertime.Asthesesignalsmovethroughacircuit,theyinteractwiththeirphysicalenvironment,creatingdisruptionsorperturbationsoftheirvalue.Successivedisruptionstoananalogsignalcanaccumulateuntilthesignaldegradestothepointofuselessness.
Toavoidinformationloss,mostcomputercircuitsbeganoperatingondigitalsignalsratherthananalogsignalsinthe1960sand1970s.
4
Thesecircuitsvieweachelectricalsignalashavingadiscrete,binaryvalueofeither0or1(called“bits”),ratherthanasacontinuousvaluethatcouldrepresentaninfinitenumberofpossibilities.Byencodingdigitalvaluesinelectricalsignals,circuitscanrejectanydisruptions,or“noise,”thatmayappear.
Figure1:Inputandoutputsignalsforananalogamplifieranddiscreteinverter
5
Inadditiontothebit-likestructurescalledqubits,quantumcomputerscanalsousecircuits,butthesesystemsbehaveverydifferentlythanclassicalsystems.Whilequbitshavetwoquantumstates,analogoustotheclassicalbinarystates0or1,theycanalsoexistina“superposition”ofthetwo,meaningtheyareinacombinationofboththe0and1stateatthesametime(seebox1fordetailsontheprincipleofsuperposition).Importantly,therangeofstatesaqubitcantakearenotonlyalltherealnumbersbetween0and1,butcomplexnumberstoo,whicharenumberssuchas
CENTERFORDATAINNOVATION
4
thesquarerootof-1,thatdonothavetangiblevalues.Thesetofvaluesasinglequbitcantakecanberepresentedbyasphere,asshownin
figure2.
Figure2:Visualizingthepossiblestatesofinputqubits
Superpositionallowsquantumcomputerstoworkonalargersetofnumbers,whichrepresentsalargerproblemspace,butalsocausesthemtobelessrobustintermsofnoiseandthereforemoreerror-prone.
6
Forexample,whenoperatingonaninputsignalvalueof0.9,atraditionalcomputerwouldrecognizethisinputisalmostcertainlya1,soitcan“remove”thenoisethatmighthavecomefrominteractionswiththephysicalsystemandtreattheinputvalueasa1beforecomputingitsoutput.Butsinceaquantumcomputeracceptsanyvaluebetween0and1,thereisnowaytoknowwhetherthesignaliscorrectorifithasbeencorruptedbynoise.Itcouldbe1withsomenoise,oritcouldbe0.9withnonoise.Asaresult,qubitoperationscurrentlyhavemoresignificanterrorratesthanclassicalcomputersandthereforeneedtheirenvironmentstobemorepreciselycontrolled.
Superpositionisnotusefulonitsown.Onemustmeasureaquantumstatetoextractinformationfromit.Asbox1describes,thisismuchliketryingtogetinformationaboutthestateofatossedcoin,whichisinasuperpositionofbothheadsandtails.Togetanyinformationaboutwhetherthecoinlandsheadsortails,onemustcatchitandobserveit.Indoingso,thesuperpositionisdestroyed.Similarly,observingaquantumsystem,knownas“measurement,”—destroyssuperposition,andtheoutputqubitlooksjustlikeaclassicaloneitiseither0or1.
Aquantumcomputercanperformallthesamecomputationsofaclassicalcomputer.Butbecauseofhighcosts,quantumcomputingisnotasuitableoptionformostapplications.Itthereforeonlymakessensetousequantumcomputingoverclassicalcomputingwhentheadvantagesofdoingso
CENTERFORDATAINNOVATION
5
outweighthesecosts.However,thereareacertainsubsetofproblems,namelyoptimizationproblems,thatquantumcomputerscansolvebetter,faster,andmoreefficientlythanclassicalcomputers.Andthereareparticularproblems,suchassolvingcertaindifficultmathproblems,thatquantumcomputerswillbeablesolveinthefuturethatclassicalcomputersneverwill.
Box1:TheSuperpositionandMeasurementPrinciples
Thesuperpositionprinciplesaysthataquantumsystem,likeanelectron,isinablendofmultiplestateswithsomeprobabilities.Toseethis,imagineflippingacoin.Whenitlands,itcanonlybeeitherheadsortails.But,whileitisstillintheair,itisflippingbetweenbeingheadsandtails.Whensomeonecatchesit,however,thereisa50percentchanceitwilllandheadsanda50percentchanceitwilllandtails.
Similarly,aqubitcanbeinoneoftwostates.Qubits,likeelectrons,protons,neutrons,andallotherquantumsystems,havethepropertyofpossessinganintrinsicmagneticdipolethatactsasacompassneedle.Thismeansquantumsystemscanbeconsideredlittlemagnetswithbothanorthandasouthpole.Theycaneitherbeorientedwiththenorthpoleinthe“up”directionorwiththesouthpoleintheupdirection,asshownin
figure3.
Inquantummechanics,thisorientationiscalledspin,andwhenthenorthpoleisorienteduptheparticleissaidtohavespinup.Conversely,whenthesouthpoleisorienteduptheparticlehasspindown.
Figure3:Diagramsofparticleswithupanddownspin.
7
Quantumsystemsmovebetweenthesetwoorientationsjustasatossedcoinflipsbetweenheadsandtails.Therefore,atanygiventime,whilewearenotobservingthesystem,itisinacombination,or“superposition,”ofbothstates,withsomeassignedprobabilitieswecancallprobabilitiesAandB.
Intuitively,wewouldassumeprobabilitiesAandBwouldadduptoequal100percent,astheydointhecoinexample.But,inthequantumrealm,themathematicalruledefiningtheseprobabilitiessaysitisthesquareofprobabilityAandthesquareofprobabilityBthatmustequalto100percent.ThismeansprobabilitiesAandBcouldbenegative(sincethesquareofanegativeisapositive),illustratinghowquantumphysics,while
CENTERFORDATAINNOVATION
6
accurate,iscounterintuitiveandnotexactlyanalogousorfamiliartoanythingweunderstandfromclassicalphysics.
Regardlessofhowcomplextheseprobabilitiesare,theyarestilljustprobabilitiesdescribinghowlikelyaquantumsystemistobeinacertainstate.Thekeypointtounderstandaboutsuperpositionisthatatanygiventime,aquantumsystemisacombinationofbothpossiblestatesatthesametime.
Observingaquantumparticle,aprocesscalled“measurement,”occurswhentheparticleinteractswithsomelargerphysicalsystemthatextractsinformationfromit.Measurementdestroysthesystem’ssuperpositionandforcesthequantumsystemtobeinoneofitstwostates.Thisismuchlikeapersoncatchingandlookingatatossedcoinandfindingittobeheads.Byobservingthecoin,theyhavecausedtheprobabilityoffindingitheadstochangefrom50percentto100percentandtheprobabilityoffindingittailstofallfrom50percentto0.Similarly,measuringaquantumsystem,likeanelectron,andfindingittobespinupforcestheprobabilityassignedtoitbeingspinuptochangefromprobabilityAto100percentandtheprobabilityoffindingitspindowntofallfromprobabilityBto0percent.
Thekeydifferencebetweenthecoinandthequantumsystemisthatwhenweleavethecoinaloneitisonlyinonestate:headsortails.Tochangeitsstate,wehavetoapplyenergytothecoinandtossitintheair.Quantumsystemsaretheopposite.Itisintheirverynaturetochangestateswhenleftcompletelyalone.Whenwechangetheenergiesactingonthesystem,weforcethesystemto“collapse”intoonestateortheother,destroyingthesuperposition.
Therefore,inordertomanipulateaquantumsystem,onemustcarefullycontrolitsenergyenvironmentbyisolatingitfromtherestoftheworldandapplyingenergyfieldswithintheisolationregiontoelicitaparticularbehavior.
8
CENTERFORDATAINNOVATION
7
THEREARETWOWAYSTOPHYSICALLYBUILDAQUANTUMCOMPUTER
Tobuildafunctionalquantumcomputer,onemustcreateaphysicalsystemthatencodesandthencontrolsandmanipulatesqubitstocarryoutcomputations.Therearecurrentlytwoleadingtechnologiestodoso.
Thefirstapproachusesatomicions,suchasberylliumions,trappedinavacuumtorepresentqubits.
9
Unliketraditionalcircuits,whereinbitsmovethroughdifferentcomponentsofthecircuit,qubits(i.e.,theions)inthismethodareheldinplaceandmanipulatedbyelectricfields.
Figure4
showsanexampleofachipcontainingtrappedions.
Figure4:IonQ’siontrapchipwithionssuperimposedoverit
10
Thesystemhastobeheldinavacuumchamberinordertominimizeitsinteractionwiththeenvironment.Similarly,laserscooltheionstocryogenictemperaturessoastoimprovethevacuumenvironmentandreducetheimpactofintrinsicelectricalnoiseontheion’smotion.
Thesecond(andprimemethod)forbuildingaquantumcomputerusestheuniquepropertiesofsuperconductingmaterials.
11
Whencertainmaterials,suchasthemetalniobium,becomeverycold,theylosetheirelectricalresistanceandareabletotransportelectronsandconductelectricity.Inparticular,theynotonlyactasuperconductorsbutstarttoexhibitquantummechanicaleffects.
12
Thesemetalscanbeusedtocreatequantumtransistors,muchlikesiliconisusedtobuildclassicaltransistors.
Figure5
showsasuperconductingquantumcomputermadewithniobium.
CENTERFORDATAINNOVATION
8
Figure5:D-WaveSystems’superconductingsystem
13
Superconductingquantumcomputinghasseveraladvantagesoverquantumcomputingimplementedontrappedions.First,superconductingqubitsaresolid-stateelectricalcircuitsthatareeasiertocontrolbecausetheyaremanipulatedusingmicrowaves.Scientistscanthereforeuseeasilyaccessiblecommercialmicrowavedevicesandequipmentinsuperconductingquantumcomputingapplications.Second,becausepreparingsuperconductingcircuitsisbasedontheexistingmethodforfabricatingsemiconductorchips,thedevelopmentofhigh-qualitydevicescanleverageadvancedchip-makingtechnologies,whichisgoodformanufacturingandscalability.
14
Quantumcomputers—whetherbasedontrappedionsorsuperconductingtechnologies—requiretemperaturesclosetoabsolutezeroinordertooperateproperly.Cryogenics,whichaddressestheproductionandeffectsofverylowtemperatures,isthereforeanindispensableenablingtechnologyforquantumcomputing.
15
Today,inordertopreservequantumdata,mostquantumdevicesareensconcedincryogenicrefrigeratorsthatareconnectedtoothermachinerythatcontrolsthequbitsandtheirenvironmentusinganumberofcables.But,mostofthecryogenictechnologiescurrentlyavailableweredevelopedtosupportscientificresearch,notcommercialapplications.Developersofquantumcomputersandquantumapplicationsarethereforeconstrainedbywhatisthecurrentstateoftheartincryogenics.TheQuantumEconomicDevelopmentConsortium(QED-C),anindustry-ledconsortiumestablishedbytheNationalQuantumInitiativeAct,conductedaworkshopin2019thatidentified“cryogeniccapabilitiesthat,ifrealized,wouldacceleratethepaceofresearchandinnovationandenabledevelopmentanddeploymentofquantumtechnologies.”
16
Policymakersneedtoensurethatadvancesinquantumtechnologiesarecoordinatedalongsideallofthetechnologiesinassociatedsupplychains.
CENTERFORDATAINNOVATION
9
MOSTUSERSACCESSQUANTUMCOMPUTERSTHROUGHTHECLOUD
Becausequantumcomputersareveryspecializedandexpensivetodevelop,fewresearchersororganizationswilldevelopthesesystems
themselvesorbuyquantummachinesoutright—.Instead,mostwillaccessthesesystemsthroughquantumcloudsservicesthatprovidevirtualaccesstoquantumsystemsthroughexistingInternetinfrastructure.Bothiontrapandsuperconductingquantumcomputerarchitecturescanbevirtualized.
17
IBM,forexample,beganmakingaccesstotheirNewYorkCity-basedsuperconductingquantumcomputeravailablethroughthecloudin2016.
18
Similarly,IonQ,aMaryland-basedquantumcomputingcompany,isworkingwithAmazonWebServicesandMicrosoftAzuretomakeaccesstoitstrapped-ionbasedsystemavailable.
19
THEREARETWOWAYSTOIMPLEMENTAQUANTUMCOMPUTER
Therearebroadlytwotypesofquantumcomputers.Analogquantumcomputersoperateonqubitsbydirectlymanipulatingtheinteractionsbetweenthemwithoutbreakingtheseactionsintodistinctoperations.
20
Forthepurposesofthisreport,wefocusonlyononeofthemostadvancedanalogquantumcomputingapproaches:quantumannealing.Bycontrast,digitalquantumcomputersoperateonqubitsusingaseriesofoperations(orgates)inafashionsimilartoclassicalcomputers.
QUANTUMANNEALING
Classicalcomputersstruggletosolveoptimizationproblemsinwhichthegoalistofindthebestfeasiblesolution,becausetheseproblemsbecomeexponentiallymorecomplicatedasthenumberofpossiblesolutionsincrease.Forexample,iftheproblemistofindtheshortestroutebetween3cities,thereareonly6possiblesolutionstoconsider.Butifthereare50cities,therearemorethan1trillionsolutionstoconsider.
Quantumcomputersusethelawofphysicstosolveoptimizationproblemsmoreefficiently,astheseproblemseasilymaptoenergyminimizationproblems.Byexploitingthefactthatphysicalsystemsbynatureseektominimizetheirenergy(e.g.,objectsslidedownhills,hotthingscooldown,etc.),quantumcomputersframeanoptimizationproblemasanenergyminimizationproblemandsimulatetheingeniouswaysquantumsystemssolvethelatter.Certaintypesofquantumcomputeraredesignedtodoexactlythisthroughaprocesscalledquantumannealing.
First,asetofqubitsisusedtorepresentallthepossiblesolutionstoaproblem(see
figure6)
.Sinceeachqubitisinasuperpositionstateof0and1,asinglequbitcanrepresentaproblemthathastwopossiblesolutions,where0representsonesolutionand1representstheother;twoqubits
CENTERFORDATAINNOVATION
10
canrepresentfourpossiblesolutions;threecanrepresenteightpossiblesolutions;andsoon,demonstratingthatthenumberofpossiblesolutionsqubitscanrepresentgrowsexponentiallyasthenumberofqubitsincrease.Thegoalisforeachqubittocollapseintothe0or1state,suchthatwhenallthequbitsaretakentogether,theyrepresentthelowestenergystateandthereforetheoptimalsolutiontoaproblem.
Figure6:Qubitsinasuperpositionstateatthestartoftheannealingprocess
Whileaclassicalcomputerwouldtryeverycombinationof0and1bitstofindtheoptimalsolution,quantumannealerscanmanipulateandbuildcorrelationsbetweenqubitssothattheyessentiallybecomeonelargequantumobject,asillustratedin
figure7.
Figure7:Entangledqubits
Thisisknownasquantumentanglement,aspecialpropertyofmultiqubitsuperpositionstatesthatmeansthequbitsbecomecorrelatedinsuchawaythatchangingthestateofonequbitinstantaneouslychangesthestateofanotherinapredictableway(seebox2fordetails—ontheprincipleofentanglement).Thisiscertainlyastrangeproperty—onethatAlbertEinsteindescribedas“spookyactionatadistance”butitisthekeyingredienttoquantumcomputers’speedadvantageoverclassicalcomputers.
21
CENTERFORDATAINNOVATION
11
Tobeclear,quantumannealing(andquantumcomputingmoregenerally)isnotclassicalcomputingspedup.Rather,quantumannealinglooksatanoptimizationprobleminanewlight.Insteadofusingbruteforcetoworkouttheoptimalsolutiontoaproblem,quantumannealingexploitstheunderlyingpatternsbetweensystemsthatcanonlybeseenfromaquantumviewpoint.
Theoutcomeofmanipulatingthesecorrelationsisthat,eventually,thequantumobjectwillcollapseintotheminimumenergystate,representingtheoptimalsolutiontoanoptimizationproblem,asillustratedin
figure8.
Figure8:Qubitsinasuperpositionstateattheendoftheannealingprocess
Box2:TheEntanglementPrinciple
Undersomecircumstances,twoormorequantumobjectsinasystemcanbeintrinsicallylinkedsuchthatmeasurementofonedictatesthepossiblemeasurementoutcomesforanother,regardlessofhowfarapartthetwoobjectsare.Thepropertyunderlyingthisphenomenon,knownas“entanglement,”iskeytothepotentialpowerofquantumcomputing.
Tovisualizethis,considerthetwoentangledparticlesasapairofgloves.IfsomeoneweretochooseonegloveatrandomandsendittotheirfriendinParisandsendtheotherglovetotheirfriendinBerlin,wecanassumethateachfriendhasa50percentchanceofreceivingeitherglove.But,ifthefriendinParisweretorevealthattheyhadreceivedtherightglove,wewouldknowwithcertaintythatthefriendinBerlinhadreceivedtheleftglove,eventhoughtheyhadnottoldus.Similarly,entangledqubitscomeinpairs.Ifwemeasureoneandfindittobeinonestate(e.g.,spinup),wewillknowwithcertaintythattheotherparticleinthepairmustbeintheoppositestate(e.g.,spindown)withouthavingtodoanyfurthermeasurements.
Toseethepowerfulimplicationsofentanglement,considertwoelectronsthatwehaveyettomeasure(showninredandbluein
figure9)
.Both
CENTERFORDATAINNOVATION
12
particle1andparticle2couldbeinspinup;orparticle1couldbeinspinupandparticle2couldbeinspindown;orparticle1inspindownandparticle2inspinup;or,bothparticlescouldbeinspindown.
Ifwewanttofindoutwhattheorientationofthispairofparticlesis,andwecannotmakeuseofthefacttheyareentangled,wemustconsiderallfouroptions.But,ifweknowtheelectronsareentangled,weonl
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小麥加工資源增值策略考核試卷
- 土木工程建筑排水系統(tǒng)施工考核試卷
- 2017社保培訓課件
- 孔樁勞務合同范本
- 民宅鋪面出售合同范本
- 碼頭設備采購合同范本
- 購買國外技術合同范本
- 熱水買賣合同范本
- led燈改造合同范本
- 寵物寄養(yǎng)服務中動物健康保證協(xié)議
- 22陳涉世家 司馬遷 公開課一等獎創(chuàng)新教學設計 度部編版初中語文九年級下冊
- 2021年飽和蒸汽及過熱蒸汽焓值表
- 《抗戰(zhàn)中的英雄人物》課件
- 外墻真石漆施工方案
- 森林防火安全生產工作
- 《服裝市場營銷》課件
- 網絡安全風險評估報告模板
- 什么是法律談判課件
- 成考教材-數學教程(文史財經類)
- 保安服務管理制度范文
- 汽車行業(yè)維修記錄管理制度
評論
0/150
提交評論