版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2.5平面向量應(yīng)用舉例2.5平面向量應(yīng)用舉例由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角等都可以由向量的線性運(yùn)算及數(shù)量積表示出來(lái),因此,可用向量方法解決平面幾何中的一些問(wèn)題.
本節(jié)課我們通過(guò)幾個(gè)具體實(shí)例,說(shuō)明向量方法在平面幾何中的運(yùn)用,向量概念源于物理中的矢量,物理中的力、位移、速度等都是向量,功是向量的數(shù)量積,從而使得向量與物理學(xué)建立了有機(jī)的內(nèi)在聯(lián)系,物理中具有矢量意義的問(wèn)題也可以轉(zhuǎn)化為向量問(wèn)題來(lái)解決.因此,在實(shí)際問(wèn)題中,如何運(yùn)用向量方法分析和解決物理問(wèn)題,又是一個(gè)值得探討的課題.由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平1.通過(guò)平行四邊形這個(gè)幾何模型,歸納總結(jié)出用向量方法解決平面幾何的問(wèn)題的”三步曲”;2.明確平面幾何圖形中的有關(guān)性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角等可以由向量的線性運(yùn)算及數(shù)量積表示.;3.讓學(xué)生深刻理解向量在處理平面幾何問(wèn)題中的優(yōu)越性.1.通過(guò)平行四邊形這個(gè)幾何模型,歸納總結(jié)出用向量方法解決平面一.復(fù)習(xí):1.平面向量數(shù)量積的含義:2.平面向量數(shù)量積的運(yùn)算律.一.復(fù)習(xí):3.重要性質(zhì):(1)(2)(3)設(shè)a、b都是非零向量,則≤3.重要性質(zhì):(1)(2)(3)設(shè)a、b都是非零向量,則≤若設(shè)A(x1,y1)、B(x2,y2),則|AB|=向量的長(zhǎng)度(模)向量的夾角公式向量數(shù)量積的坐標(biāo)表示設(shè)為兩個(gè)向量,若設(shè)A(x1,y1)、B(x2,y2),則|AB|=向量向量平行和垂直的坐標(biāo)表示設(shè)為兩個(gè)向量,向量平行和垂直的坐標(biāo)表示設(shè)為兩個(gè)向量,問(wèn)題:平行四邊形是表示向量加法與減法的幾何模型。如圖,你能發(fā)現(xiàn)平行四邊形對(duì)角線的長(zhǎng)度與兩條鄰邊長(zhǎng)度之間的關(guān)系嗎?ABCD猜想:1.長(zhǎng)方形對(duì)角線的長(zhǎng)度與兩條鄰邊長(zhǎng)度之間有何關(guān)系?2.類比猜想,平行四邊形有相似關(guān)系嗎?一、平面幾何中的向量方法問(wèn)題:平行四邊形是表示向量加法與減法的幾何模型。如圖,你能發(fā)例1、證明平行四邊形四邊平方和等于兩對(duì)角線平方和.ABDC已知:平行四邊形ABCD,求證:解:設(shè),則
分析:因?yàn)槠叫兴倪呅螌?duì)邊平行且相等,故設(shè)其它線段對(duì)應(yīng)向量用它們表示。∴例1、證明平行四邊形四邊平方和等于兩對(duì)角線平方和.ABDC已例2
如圖,ABCD中,點(diǎn)E、F分別是AD、
DC邊的中點(diǎn),BE、
BF分別與AC交于R、
T兩點(diǎn),你能發(fā)現(xiàn)AR、
RT、TC之間的關(guān)系嗎?ABCDEFRT猜想:AR=RT=TC例2如圖,ABCD中,點(diǎn)E、F分別是AD、DC解:設(shè)則由于與共線,故設(shè)又因?yàn)楣簿€,所以設(shè)因?yàn)樗訟BCDEFRT解:設(shè)11故AT=RT=TC.ABCDEFRT故AT=RT=TC.ABCDEFRT練習(xí).證明直徑所對(duì)的圓周角是直角.ABCO如圖所示,已知⊙O,AB為直徑,C為⊙O上任意一點(diǎn)。求證∠ACB=90°分析:要證∠ACB=90°,只須證向量,即解:設(shè)則,由此可得:即,∠ACB=90°思考:能否用向量坐標(biāo)形式證明?練習(xí).證明直徑所對(duì)的圓周角是直角.ABCO如圖所示,已知⊙O(1)建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題;(3)把運(yùn)算結(jié)果“翻譯”成幾何元素。用向量方法解決平面幾何問(wèn)題的“三步曲”:簡(jiǎn)述:形到向量向量的運(yùn)算向量和數(shù)到形(1)建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中涉及的幾何元1.向量在力學(xué)中的應(yīng)用思考1:如圖,用兩條成120°角的等長(zhǎng)的繩子懸掛一個(gè)重量是10N的燈具,根據(jù)力的平衡理論,每根繩子的拉力與燈具的重力具有什么關(guān)系?每根繩子的拉力是多少?120°OCBA10N|F1|=|F2|=10NF1+F2+G=0二、平面向量在物理中的應(yīng)用1.向量在力學(xué)中的應(yīng)用思考1:如圖,用兩條成120°角的等長(zhǎng)思考2:兩個(gè)人共提一個(gè)旅行包,或在單杠上做引體向上運(yùn)動(dòng),根據(jù)生活經(jīng)驗(yàn),兩只手臂的夾角大小與所耗力氣的大小有什么關(guān)系?夾角越大越費(fèi)力.思考3:若兩只手臂的拉力為F1、F2,物體的重力為G,那么F1、F2、G三個(gè)力之間具有什么關(guān)系?
F1+F2+G=0.思考2:兩個(gè)人共提一個(gè)旅行包,或在單杠上做引體向上運(yùn)動(dòng),根據(jù)思考4:假設(shè)兩只手臂的拉力大小相等,夾角為θ,那么|F1|、|G|、θ之間的關(guān)系如何?FF1F2Gθ思考5:上述結(jié)論表明,若重力G一定,則拉力的大小是關(guān)于夾角θ的函數(shù).在物理學(xué)背景下,這個(gè)函數(shù)的定義域是什么?單調(diào)性如何?θ∈[0°,180°)思考4:假設(shè)兩只手臂的拉力大小相等,夾角為θ,那么|F1|、思考6:|F1|有最大值或最小值嗎?|F1|與|G|可能相等嗎?為什么?θ∈[0°,180°)思考6:|F1|有最大值或最小值嗎?|F1|與|G|可能相等2.向量在運(yùn)動(dòng)學(xué)中的應(yīng)用思考1:如圖,一條河的兩岸平行,一艘船從A處出發(fā)到河對(duì)岸,已知船在靜水中的速度|v1|=10㎞/h,水流速度|v2|=2㎞/h,如果船垂直向?qū)Π恶側(cè)ィ敲创膶?shí)際速度v的大小是多少?A|v|=㎞/h.2.向量在運(yùn)動(dòng)學(xué)中的應(yīng)用思考1:如圖,一條河的兩岸平行,一艘思考2:如果船沿與上游河岸成60°方向行駛,那么船的實(shí)際速度v的大小是多少?v1v2v60°
|v|2=|v1+v2|2=(v1+v2)2=84.思考2:如果船沿與上游河岸成60°方向行駛,那么船的實(shí)際速度思考3:船應(yīng)沿什么方向行駛,才能使航程最短?v1v2vABC與上游河岸的夾角為78.73°.思考4:如果河的寬度d=500m,那么船行駛到對(duì)岸至少要幾分鐘?思考3:船應(yīng)沿什么方向行駛,v1v2vABC與上游河岸的夾角例3
一架飛機(jī)從A地向北偏西60°方向飛行1000km到達(dá)B地,然后向C地飛行,若C地在A地的南偏西60°方向,并且A、C兩地相距2000km,求飛機(jī)從B地到C地的位移.東CBA北西南位移的方向是南偏西30°,大小是km.例3一架飛機(jī)從A地向北偏西60°方向飛行1000km到達(dá)一個(gè)物體受到同一平面內(nèi)三個(gè)力F1、F2、F3的作用,沿北偏東45°方向移動(dòng)了8m,已知|F1|=2N,方向?yàn)楸逼珫|30°,|F2|=4N,方向?yàn)闁|偏北30°,|F3|=6N,方向?yàn)槲髌?0°,求這三個(gè)力的合力所做的功.東F1北西南F2F3W=F·s=J.一個(gè)物體受到同一平面內(nèi)三個(gè)力F1、F2、F3的作用,沿北偏東1.利用向量解決物理問(wèn)題的基本步驟:①問(wèn)題轉(zhuǎn)化,即把物理問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題;②建立模型,即建立以向量為載體的數(shù)學(xué)模型;③求解參數(shù),即求向量的模、夾角、數(shù)量積等;④回答問(wèn)題,即把所得的數(shù)學(xué)結(jié)論回
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年北師大版高三歷史上冊(cè)階段測(cè)試試卷含答案
- 2025年滬教新版選修3物理上冊(cè)階段測(cè)試試卷含答案
- 2025年粵人版高一數(shù)學(xué)下冊(cè)階段測(cè)試試卷
- 2025年北師大版九年級(jí)地理下冊(cè)月考試卷含答案
- 2025年湘教版選擇性必修1歷史下冊(cè)月考試卷含答案
- 2025年浙教新版必修三英語(yǔ)上冊(cè)階段測(cè)試試卷
- 公共文化服務(wù)理論與實(shí)務(wù)知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋四川藝術(shù)職業(yè)學(xué)院
- 2025年度美容院美容產(chǎn)品包裝設(shè)計(jì)與生產(chǎn)合同4篇
- 二零二五年度農(nóng)業(yè)休閑觀光園開(kāi)發(fā)合同4篇
- 二零二五年度綠色生態(tài)農(nóng)用地流轉(zhuǎn)合同4篇
- 2024年蘇州工業(yè)園區(qū)服務(wù)外包職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試歷年參考題庫(kù)含答案解析
- 人教版初中語(yǔ)文2022-2024年三年中考真題匯編-學(xué)生版-專題08 古詩(shī)詞名篇名句默寫(xiě)
- 2024-2025學(xué)年人教版(2024)七年級(jí)(上)數(shù)學(xué)寒假作業(yè)(十二)
- 《精密板料矯平機(jī) 第2部分:技術(shù)規(guī)范》
- 2024年高考全國(guó)甲卷英語(yǔ)試卷(含答案)
- 2024光伏發(fā)電工程交流匯流箱技術(shù)規(guī)范
- 旅游活動(dòng)碳排放管理評(píng)價(jià)指標(biāo)體系構(gòu)建及實(shí)證研究
- 2022年全國(guó)職業(yè)院校技能大賽-電氣安裝與維修賽項(xiàng)規(guī)程
- 小學(xué)德育養(yǎng)成教育工作分層實(shí)施方案
- 2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)附答案
- 黑枸杞生物原液應(yīng)用及產(chǎn)業(yè)化項(xiàng)目可行性研究報(bào)告
評(píng)論
0/150
提交評(píng)論