版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
X為隨量,則???1((?∞,r])∈??且???1((?∞,r))∈??(r為任意因此|??|?1((r])=???1([?r,r])=???1((r](?∞,?r))=???1((?∞,r])????1((?∞,?r))∈|??|?1((?∞,r])=??∈明{ω|X(ω)=Y(ω)}∈F。{ω|X(ω)=Y(ωω|X(ω)≥Y(ω)}∩{ω|X(ω)≤Y(ω)}由于F為σ代數(shù),對交封閉,而上述集合又有對稱性,只需證而{ω|X(ω)≥Y(ω)}?r∈?({ω|X(ω)≥r}ω|Y(ω)≤r})???∈?({ω|X(ω)≥q}∩{ω|Y(ω)≤如果F和G是分布函數(shù),請說明λF+(1-λ)G是分布函數(shù)。FG仍(應(yīng)該認(rèn)為0≤λ≤1Fu(x),Gu(x-1)(階躍函負(fù)性可由1、2推知)3)右連續(xù);
????+(1???)??=??????+(1???)??=??
??+(1???)??+(1???)
??=??=??(1???)=
????(x)+(1???)??(??)=??
??(??)+(1??)
??(??)=????(??0)+(1?F(x1)G(x1)–
????? ?????
??????
??=??=
??(x)???(??)
??(??)
??(??)=??(??0)? 對密度函數(shù),滿足1)非負(fù)性2)實(shí)軸積分為
????+(1???)??=
∞??+(1?
∞??=??+(1???)1????(??)=?? ????(??)=∫??exp(???)????=???exp(???)|1 = a0時(shí)??(??)=??(??≤t)=??(????+??≤??)=PX≤????? ??(? a0時(shí)??(??)=??(??≤t)=??(????+??≤??)=PX≥?????)=1P(X
?????)+P(X
)=1????? ?)+P(X ?
F(x)+(1?F(x))log(1?證明:1)H(t)=t(1t)log(1H′(t)=1+(?1)log(1?t)?(1?t)
=?log(1當(dāng)0t1時(shí),恒有H’(t)=-log(1-t)2)
??(??)+(1???(??))log(1?
??(??)+(1???(??))log(1?=0+(1?0)log(1?0)=lim??(??)+(1???(??))log(1???(??)) ??(??) (1???(??))log(1???(??))=1+lim????????(??)=1+limlog(??)=1 lim =1?lim??=??→03)
??(??)+(1???(??))log(1???(??))
??(??)(1???(??))log(1???(??))=??(??0)+(1???(??0))log(1?(F(x)為單調(diào)不減函數(shù)x??0+等效于F(xF(??0)+,且H(t)=t+(1?t)log(1?t)為連續(xù)函數(shù)) ??<Y= ??≤??≤ ??>F,Y?1((?∞,當(dāng)r<a時(shí)Y?1((??])=?∈當(dāng)a≤r<b時(shí)Y?1((??])=X?1((??])∈當(dāng)r≥b時(shí)Y?1((??])=Ω∈ ??<????(??)={??X(??)??≤??< ??≥1??x(??)=3????[0,3](??)+隨量Y=X2,計(jì)算P(X≤2Y)=P(X≤
=??(??≤0或X 2 =????(0)+1???(?? )=1?????()=1 ? 5=6 P(X≥μ)
,P(X≤μ) 性嗎?,請證明;如無,請給出反例。由于lim??(??)1,由極限定義可知存在x0使得|F(x0)-1|≤ 令μ為所有滿足上述條件的最小值,即μmin(??(??)1)( P(X≥μ)=1P(X<μ)≥1,則μ2≤1:F??(??+??)?????(?????)>0,?ε>請說明,如果y滿足P(X=y)0,則y一定是????的支撐點(diǎn)。是否每一個(gè)支撐點(diǎn)y都滿足P(X=y)>0呢?你能給出支撐點(diǎn)y滿足P(X=y)>0所需要的條件嗎?由于P(X=y0
F??(x)<
?ε>0,F(xiàn)??(?????)≤
F??(x)<
F??(x)≤????(??+)
F??(x)<
設(shè)集合A(n,t)={x|x=t2???1,t∈Z,n,k∈N+,且k≤2???11P(X=x)={3? ??∈??(??, ?????(??,??),???∈??+,??∈
P(Ω) ??(??=??)= 3?∞
1= ∞
3?22???11
?∞ = ??=13?
?3=
??=1
?∞=
2??=若y???(????)??∈????∈??,對任意ε0,取2??>1即2 1?+2F??(?????)≤F(x0)<F(x1)≤????(??+調(diào)性,則G不再是單射,其逆???1的定義需要重新。請令???1(U)=min{??(??)=??},(對任意U可找到最小值由續(xù)保證,取最大值則無法保證一定可以找到)并設(shè)???1(0F??(??)=??(??≤??)=??(???1(??)≤只要證??(???1(??)≤??)=P(??≤G(x))即???1(??)≤?????≤1)???1(??)≤?????(???1(??))≤??(??)(??(??)單調(diào)不減)??? }????1(??)≤ 的性質(zhì)有重要意義。常用的Levy距離(LevyMetric)定義如下:????(??,??)=inf{??>0:??(?????)???≤??(??)≤??(??+??)+請驗(yàn)證,????(????)的確是距離,即其滿足距離定義中要求的三條????(????)=0?F= ????(????)=????(G ????(????)+????(????)≥????(????)對稱性:對滿足??(????)????(????(????)??,?x的所有ε,同時(shí)又有??(?????)≤??(??)(對任意x成立,則平移??后也成立),及??(??+??)≤??(??)???,因此可以得出??(?????)???≤??(??)≤??(??+??)+????(??,??)=inf{??>0:??(?????)???≤??(??)≤??(??+??)+=inf{??>0:??(?????)???≤≤??(??+??)+??,?x}=????(G,自反性:????(????)=0則對任意ε>0有??(???????≤??(??)??(??+??)+
??(??+??)???=
??(??)=??(??)≥??(??)(及G(x)續(xù)),而由對稱性可同樣證明??(??)≥??(??),因另一方面,G(x)=F(x)時(shí),恒有??(????)??≤??(????<??(??)??(??)<??(??)??≤??(??????(G(x)具有單調(diào)不減性,??>0)因此??下確界為0,即????(??,??)=0,時(shí),恒有??(???????<??(????????≤??(??)≤??(??+??????(?????)??,因此對任意ε1,ε2滿足ε1>????(????),ε2>????(??有??(?????1)???1≤??(??)≤??(??+??1)+??(?????2)???2≤??(??)≤??(??+??2)+上式得出??(????2??2≥??(????1??1,??(????2??2??(??+??1)+由x的任意平移性可以得到??(????2≥??(????2??1??(??)???2≤??(??+??2+??1)+即??(????1??2)??1??2??(??)??(??(??1??2))+(??1+??2),?x大下界,即??1??2????(????),而對任意??1及??2均有上述關(guān)系,因此當(dāng)取下極限后有????(??,??)+????(??,??)≥????(??,??)VariationDistance)。令X和Y是取值自然數(shù)N的隨量,則∞??TV(??,??)= |??(??=??)???(??=??TV(??,??)=2sup|??(??∈??)???(??∈設(shè)A={k∈N|P(X=k)>P(Y=B={k∈N|P(X=k)<P(Y=C={k∈N|P(X=k)=P(Y=(??(??∈??)???(??∈??))+(??(??∈B)???(??∈+(??(??∈??)???(??∈??))=??(??∈??)???(??∈=1?1=而又??(??∈????(??∈??)=0,??(??∈????(??∈??)>??(??∈??)???(??∈??)<因此??(??∈????(??∈??)=??(??∈????(??∈∞??TV(??,??)= |??(??=??)???(??==∑??(??=??)???(??=+∑??(??=??)???(??==2∑??(??=??)???(??==2(??(??∈??)???(??∈因此只要證sup|??(??∈????(??∈??)|??(??∈????(??∈首先顯然有??(??∈????(??∈??)=|??(??∈????(??∈??)|sup|??(??∈??)???(??∈對任意T|??(??∈??)???(??∈=|∑(??(??=??)???(??=+∑(??(??=??)???(??=+∑(??(??=??)???(??==|∑(??(??=??)???(??=?∑(??(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手汽車協(xié)議書3篇
- 合同選擇勞動合同勞務(wù)合同3篇
- 國內(nèi)出差合同范本3篇
- 醫(yī)療設(shè)備意向合同范例
- 茶館經(jīng)營合作合同范例
- 輥筒加工合同范例
- 盆景承包合同范例
- 轉(zhuǎn)讓美甲店合同范例
- 武漢商貿(mào)職業(yè)學(xué)院《錄音藝術(shù)實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 武漢軟件工程職業(yè)學(xué)院《離散數(shù)學(xué)(Ⅰ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2023山東省科創(chuàng)集團(tuán)限公司集團(tuán)總部招聘1人上岸筆試歷年難、易錯(cuò)點(diǎn)考題附帶參考答案與詳解
- 數(shù)學(xué)建模基礎(chǔ)學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 屋面輕質(zhì)混凝土找坡層技術(shù)交底
- 食品工程原理課程設(shè)計(jì)花生油換熱器的設(shè)計(jì)
- 福利彩票機(jī)轉(zhuǎn)讓協(xié)議
- 中國常用漢字大全
- 農(nóng)村留守兒童的營養(yǎng)狀況及干預(yù)措施論文
- 水利工程建設(shè)匯報(bào)材料(通用3篇)
- 10篇罪犯矯治個(gè)案
- 2023河南省成人高考《英語》(高升專)考試卷及答案(單選題型)
- 教學(xué)設(shè)計(jì)《營養(yǎng)健康我守護(hù)-數(shù)據(jù)的價(jià)值》
評論
0/150
提交評論