版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
3.2三角變換與解三角形專項練第三部分20213.2三角變換與解三角形專項練第三部分2021內(nèi)容索引0102必備知識精要梳理考向訓(xùn)練限時通關(guān)內(nèi)容索引0102必備知識精要梳理考向訓(xùn)練限時通關(guān)必備知識精要梳理必備知識精要梳理1.兩角和與差的正弦、余弦、正切公式sin(α±β)=sinαcosβ±cosαsinβ;cos(α±β)=cosαcosβ?sinαsinβ;2.二倍角公式sin2α=2sinαcosα;cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α;1.兩角和與差的正弦、余弦、正切公式2.二倍角公式3.降冪公式
4.正弦、余弦定理
3.降冪公式4.正弦、余弦定理考向訓(xùn)練限時通關(guān)考向訓(xùn)練限時通關(guān)考向一兩角和與差的公式的應(yīng)用A.-2 B.-1 C.1 D.2答案
D
解析
由已知得2tan
θ-=7,即tan2θ-4tan
θ+4=0,解得tan
θ=2.考向一兩角和與差的公式的應(yīng)用A.-2 B.-1 C.1 D.答案
B答案B3.(2020湖南師大附中一模,理7)已知α為銳角,且cosα(1+tan10°)=1,則α的值為(
)A.20° B.40° C.50° D.70°答案
B3.(2020湖南師大附中一模,理7)已知α為銳角,且cos4.(2020全國Ⅰ,理9)已知α∈(0,π),且3cos2α-8cosα=5,則sinα=(
)答案
A4.(2020全國Ⅰ,理9)已知α∈(0,π),且3cos2021新高考數(shù)學(xué)二輪復(fù)習(xí):專題三-32-三角變換與解三角形專項練課件考向二三角函數(shù)與三角變換的綜合6.已知函數(shù)f(x)=asinx+bcosx(x∈R),若x=x0是函數(shù)f(x)圖象的一條對稱軸,且tanx0=3,則a,b應(yīng)滿足的表達(dá)式是(
)A.a=-3b B.b=-3aC.a=3b D.b=3a考向二三角函數(shù)與三角變換的綜合6.已知函數(shù)f(x)=asin答案
C答案C7.已知函數(shù)f(x)=2cos2x-sin2x+2,則(
)A.f(x)的最小正周期為π,最大值為3B.f(x)的最小正周期為π,最大值為4C.f(x)的最小正周期為2π,最大值為3D.f(x)的最小正周期為2π,最大值為4答案
B7.已知函數(shù)f(x)=2cos2x-sin2x+2,則(2021新高考數(shù)學(xué)二輪復(fù)習(xí):專題三-32-三角變換與解三角形專項練課件答案
AB答案AB9.(2020北京,14)若函數(shù)f(x)=sin(x+φ)+cosx的最大值為2,則常數(shù)φ的一個取值為
.
9.(2020北京,14)若函數(shù)f(x)=sin(x+φ)+考向三解三角形答案
C考向三解三角形答案C11.(多選)對于△ABC,有如下判斷,其中正確的判斷是(
)A.若sin2A=sin2B,則△ABC為等腰三角形B.若A>B,則sinA>sinBC.若a=8,c=10,B=60°,則符合條件的△ABC有兩個D.若sin2A+sin2B<sin2C,則△ABC是鈍角三角形11.(多選)對于△ABC,有如下判斷,其中正確的判斷是(
答案
BD
解析
對于A,若sin
2A=sin
2B,則2A=2B或2A+2B=π,當(dāng)A=B時,△ABC為等腰三角形,當(dāng)A+B=時,△ABC為直角三角形,故A不正確;對于B,若A>B,則a>b,由正弦定理得sin
A>sin
B成立,故B正確;∴C為鈍角,∴△ABC是鈍角三角形,故D正確.故選BD.答案BD解析對于A,若sin2A=sin22021新高考數(shù)學(xué)二輪復(fù)習(xí):專題三-32-三角變換與解三角形專項練課件答案
BCD答案BCD2021新高考數(shù)學(xué)二輪復(fù)習(xí):專題三-32-三角變換與解三角形專項練課件13.(多選)在△ABC中,下列命題正確的有(
)A.若A=30°,b=4,a=5,則△ABC有兩解B.若0<tanA·tanB<1,則△ABC一定是鈍角三角形C.若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC一定是等邊三角形D.若a-b=c·cosB-c·cosA,則△ABC是等腰或直角三角形13.(多選)在△ABC中,下列命題正確的有()答案
BCD答案BCD因為cos(A-B)cos(B-C)cos(C-A)=1,所以cos(A-B)=cos(B-C)=cos(C-A)=1,所以A=B=C=60°,故C正確;因為a-b=c·cos
B-c·cos
A,所以sin
A-sin
B=sin
Ccos
B-sin
Ccos
A,所以sin
A-sin
Ccos
B=sin
B-sin
Ccos
A.又因為sin
A=sin(B+C)=sin
Bcos
C+cos
Bsin
C,sin
B=sin(A+C)=sin
Acos
C+cos
Asin
C,所以sin
Bcos
C=sin
Acos
C,所以sin
A=sin
B或cos
C=0,因為cos(A-B)cos(B-C)cos(C-A)=1,所14.(2020全國Ⅰ,理16)如圖,在三棱錐P-ABC的平面展開圖中,AC=1,AB=AD=,AB⊥AC,AB⊥AD,∠CAE=30°,則cos∠FCB=
.
14.(2020全國Ⅰ,理16)如圖,在三棱錐P-ABC的2021新高考數(shù)學(xué)二輪復(fù)習(xí):專題三-32-三角變換與解三角形專項練課件15.(2020河南實驗中學(xué)4月模擬,14)如圖,為測量出高M(jìn)N,選擇A和另一座山的山頂C為測量觀測點,從點A測得點M的仰角∠MAN=60°,點C的仰角∠CAB=45°以及∠MAC=75°;從C點測得∠MCA=60°.已知山高BC=100m,則山高M(jìn)N=
m.
15.(2020河南實驗中學(xué)4月模擬,14)如圖,為測量出高答案
150答案15016.(2020山東,15)某中學(xué)開展勞動實習(xí),學(xué)生加工制作零件,零件的截面如圖所示.O為圓孔及輪廓圓弧AB所在圓的圓心,A是圓弧AB與直線AG的切點,B是圓弧AB與直線BC的切點,四邊形DEFG為矩形,BC⊥DG,垂足為C,tan∠ODC=,BH∥DG,EF=12cm,DE=2cm,A到直線DE和EF的距離均為7cm,圓孔半徑為1cm,則圖中陰影部分的面積為
cm2.
16.(2020山東,15)某中學(xué)開展勞動實習(xí),學(xué)生加工制作解析
作OM⊥CG交
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家具賣場采購合同范例
- 砂石供應(yīng)居間合同范例
- 汕頭大學(xué)《環(huán)境生態(tài)工程原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 簡易商鋪贈與合同范例
- 是建筑采購合同范例
- 陜西郵電職業(yè)技術(shù)學(xué)院《軟件開發(fā)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024至2030年中型熱風(fēng)回流焊接機(jī)項目投資價值分析報告
- 2024至2030年全棉全桐石棉纏繞片項目投資價值分析報告
- 2024至2030年乳豬教槽顆粒料項目投資價值分析報告
- 陜西鐵路工程職業(yè)技術(shù)學(xué)院《機(jī)械制圖與AutoCAD(2)》2023-2024學(xué)年第一學(xué)期期末試卷
- 養(yǎng)老服務(wù)與安全管理作業(yè)指導(dǎo)書
- 福建省公路水運(yùn)工程試驗檢測費用參考指標(biāo)
- (小學(xué)組)全國版圖知識競賽考試題含答案
- 期末+(試題)+-2024-2025學(xué)年人教PEP版英語六年級上冊
- 安徽合肥國有企業(yè)招聘筆試題庫2024
- 軍隊文職公共科目(國防與軍隊)模擬試卷1(共248題)
- 大國外交演講與辯論智慧樹知到期末考試答案章節(jié)答案2024年中國石油大學(xué)(華東)
- 數(shù)據(jù)通信與計算機(jī)網(wǎng)絡(luò)智慧樹知到期末考試答案章節(jié)答案2024年四川鐵道職業(yè)學(xué)院
- 心理成長與發(fā)展智慧樹知到期末考試答案章節(jié)答案2024年武漢職業(yè)技術(shù)學(xué)院
- 青少版新概念3B-U21市公開課一等獎省賽課微課金獎?wù)n件
- 儲能業(yè)務(wù)培訓(xùn)
評論
0/150
提交評論