版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆黑龍江省大興安嶺松嶺區(qū)古源中學(xué)九年級數(shù)學(xué)第一學(xué)期期末預(yù)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.下列各式中屬于最簡二次根式的是()A. B. C. D.2.如圖,已知扇形BOD,DE⊥OB于點E,若ED=OE=2,則陰影部分面積為()A. B. C. D.3.一元錢硬幣的直徑約為24mm,則用它能完全覆蓋住的正六邊形的邊長最大不能超過()A.12mm B.12mmC.6mm D.6mm4.關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍為()A. B. C. D.5.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個結(jié)論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個6.已知反比例函數(shù)的圖象經(jīng)過點(1,2),則它的圖象也一定經(jīng)過()A.(1,﹣2) B.(﹣1,2) C.(﹣2,1) D.(﹣1,﹣2)7.已知點,,,在二次函數(shù)的圖象上,則,,的大小關(guān)系是()A. B. C. D.8.若x1是方程(a≠0)的一個根,設(shè),,則p與q的大小關(guān)系為()A.p<q B.p=q C.p>q D.不能確定9.下列四個幾何體中,主視圖是三角形的是()A. B. C. D.10.若分式的值為,則的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.已知平行四邊形中,,且于點,則_____.12.不透明袋子中裝有7個球,其中有3個紅球,4個黃球,這些球除顏色外無其他差別,從袋子中隨機取出1個球,則它是紅球的概率是_____.13.如圖,以正六邊形ADHGFE的一邊AD為邊向外作正方形ABCD,則∠BED=_______°.14.若代數(shù)式4x2-2x-5與2x2+1的值互為相反數(shù),則x的值是____.15.已知非負數(shù)a、b、c滿足a+b=2,,,則d的取值范圍為____.16.順次連接矩形各邊中點所得四邊形為_____.17.如圖,在⊙O中,,AB=3,則AC=_____.18.如圖,在平面直角坐標系中,直角三角形的直角頂點與原點O重合,頂點A,B恰好分別落在函數(shù),的圖象上,則tan∠ABO的值為___________三、解答題(共66分)19.(10分)某跳水隊為了解運動員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(1)本次接受調(diào)查的跳水運動員人數(shù)為,圖①中m的值為;(2)求統(tǒng)計的這組跳水運動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).20.(6分)解方程:(1);(2).21.(6分)已知,反比例函數(shù)的圖象經(jīng)過點M(2,a﹣1)和N(﹣2,7+2a),求這個反比例函數(shù)解析式.22.(8分)四川是聞名天下的“熊貓之鄉(xiāng)”,每年到大熊貓基地游玩的游客絡(luò)繹不絕,大學(xué)生小張加入創(chuàng)業(yè)項目,項目幫助她在基地附近租店賣創(chuàng)意熊貓紀念品.已知某款熊貓紀念物成本為30元/件,當售價為45元/件時,每天銷售250件,售價每上漲1元,銷量下降10件.(1)求每天的銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若每天該熊貓紀念物的銷售量不低于240件的情況下,當銷售單價為多少元時,每天獲取的利潤最大?最大利潤是多少?(3)小張決定從這款紀念品每天的銷售利潤中捐出150元給希望工程,為了保證捐款后這款紀念品每天剩余利潤不低于3600元,試確定該熊貓紀念物銷售單價的范圍.23.(8分)關(guān)于x的方程x1﹣1(k﹣1)x+k1=0有兩個實數(shù)根x1、x1.(1)求k的取值范圍;(1)若x1+x1=1﹣x1x1,求k的值.24.(8分)關(guān)于的一元二次方程有兩個不等實根,.(1)求實數(shù)的取值范圍;(2)若方程兩實根,滿足,求的值。25.(10分)已知函數(shù)解析式為y=(m-2)(1)若函數(shù)為正比例函數(shù),試說明函數(shù)y隨x增大而減小(2)若函數(shù)為二次函數(shù),寫出函數(shù)解析式,并寫出開口方向(3)若函數(shù)為反比例函數(shù),寫出函數(shù)解析式,并說明函數(shù)在第幾象限26.(10分)如圖1,AB為⊙O的直徑,點C為⊙O上一點,CD平分∠ACB交⊙O于點D,交AB于點E.(1)求證:△ABD為等腰直角三角形;(2)如圖2,ED繞點D順時針旋轉(zhuǎn)90°,得到DE′,連接BE′,證明:BE′為⊙O的切線;(3)如圖3,點F為弧BD的中點,連接AF,交BD于點G,若DF=1,求AG的長.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)最簡二次根式的定義解答即可.【題目詳解】A.是最簡二次根式;B.∵=,∴不是最簡二次根式;C.∵=,∴不是最簡二次根式;D.∵,∴不是最簡二次根式;故選A.【題目點撥】本題考查了最簡二次根式的識別,如果二次根式的被開方式中都不含分母,并且也都不含有能開的盡方的因式,像這樣的二次根式叫做最簡二次根式.2、B【分析】由題意可得△ODE為等腰直角三角形,可得出扇形圓心角為45°,再根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【題目詳解】解:∵DE⊥OB,OE=DE=2,
∴△ODE為等腰直角三角形,∴∠O=45°,OD=OE=2.∴S陰影部分=S扇形BOD-S△OED=
故答案為:B.【題目點撥】本題考查的是扇形面積計算、等腰直角三角形的性質(zhì),利用轉(zhuǎn)化法求陰影部分的面積是解題的關(guān)鍵.3、A【解題分析】試題解析:已知圓內(nèi)接半徑r為12mm,則OB=12,∴BD=OB?sin30°=12×=6,則BC=2×6=12,可知邊長為12mm,就是完全覆蓋住的正六邊形的邊長最大.故選A.4、B【分析】根據(jù)方程有兩個不等的實數(shù)根,故△>0,得不等式解答即可.【題目詳解】試題分析:由已知得△>0,即(﹣3)2﹣4m>0,解得m<.故選B.【題目點撥】此題考查了一元二次方程根的判別式.5、C【題目詳解】根據(jù)圖像可得:a<0,b<0,c=0,即abc=0,則①正確;當x=1時,y<0,即a+b+c<0,則②錯誤;根據(jù)對稱軸可得:-=-,則b=3a,根據(jù)a<0,b<0可得:a>b;則③正確;根據(jù)函數(shù)與x軸有兩個交點可得:-4ac>0,則④正確.故選C.【題目點撥】本題考查二次函數(shù)的性質(zhì).能通過圖象分析a,b,c的正負,以及通過一些特殊點的位置得出a,b,c之間的關(guān)系是解題關(guān)鍵.6、D【分析】根據(jù)反比例函數(shù)圖象和性質(zhì)即可解答.先判斷出反比例函數(shù)圖象的一分支所在象限,即可得到另一分支所在象限.【題目詳解】解:由于點(1,2)在第一象限,則反比例函數(shù)的一支在第一象限,另一支必過第三象限.第三象限內(nèi)點的坐標符號為(﹣,﹣)故選:D.【題目點撥】此題主要考查反比例函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知反比例函數(shù)圖像的對稱性.7、D【分析】由拋物線開口向上且對稱軸為直線x=3知離對稱軸水平距離越遠,函數(shù)值越大,據(jù)此求解可得.【題目詳解】∵二次函數(shù)中a=1>0,∴拋物線開口向上,有最小值.∵x=?=3,∴離對稱軸水平距離越遠,函數(shù)值越大,∵由二次函數(shù)圖象的對稱性可知4?3<3?<3?1,∴.故選:D.【題目點撥】本題主要考查二次函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是掌握二次函數(shù)的圖象與性質(zhì).8、A【分析】把x1代入方程ax2-2x-c=0得ax12-2x1=c,作差法比較可得.【題目詳解】解:∵x1是方程ax2-2x-c=0(a≠0)的一個根,
∴ax12-2x1-c=0,即ax12-2x1=c,
則p-q=(ax1-1)2-(ac+1.5)
=a2x12-2ax1+1-1.5-ac
=a(ax12-2x1)-ac-0.5
=ac-ac-0.5
=-0.5,
∵-0.5<0,
∴p-q<0,
∴p<q.
故選:A.【題目點撥】本題主要考查一元二次方程的解及作差法比較大小,熟練掌握能使方程成立的未知數(shù)的值叫做方程的解,利用比差法比較大小是解題的關(guān)鍵.9、B【解題分析】主視圖是三角形的一定是一個錐體,只有B是錐體.故選B.10、A【分析】分式值為零的條件是分子等于零且分母不等于零,據(jù)此求解即可.【題目詳解】解:∵分式的值為1,
∴x-2=1且x+4≠1.
解得:x=2.
故選:A.【題目點撥】本題主要考查的是分式值為零的條件,熟練掌握分式值為零的條件是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、60°【分析】根據(jù)平行四邊形性質(zhì)可得,再根據(jù)等腰三角形性質(zhì)和三角形內(nèi)角和求出,最后根據(jù)直角三角形兩銳角互余即可解答.【題目詳解】解:四邊形是平行四邊形,,,∴,,∴,,,故答案為:60°.【題目點撥】本題考查平行四邊形的判定、等腰三角形的性質(zhì)、直角三角形的性質(zhì)等知識,解題的關(guān)鍵是利用平行四邊形的性質(zhì)以及等腰三角形的性質(zhì)求出,屬于中考??碱}型.12、【解題分析】根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【題目詳解】解:∵袋子中共有7個球,其中紅球有3個,∴從袋子中隨機取出1個球,它是紅球的概率是,故答案為:.【題目點撥】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.13、45°【題目詳解】∵正六邊形ADHGFE的內(nèi)角為120°,正方形ABCD的內(nèi)角為90°,∴∠BAE=360°-90°-120°=150°,∵AB=AE,∴∠BEA=(180°-150°)÷2=15°,∵∠DAE=120°,AD=AE,∴∠AED=(180°-120°)÷2=30°,∴∠BED=15°+30°=45°.14、1或-【解題分析】由題意得:4x2-2x-5+2x2+1=0,解得:x=1或x=-,故答案為:1或-.15、5≤d≤1.【分析】用a表示出b、c并求出a的取值范圍,再代入d整理成關(guān)于a的函數(shù)形式,然后根據(jù)二次函數(shù)的增減性求出答案即可.【題目詳解】∵a+b=2,c-a=3,∴b=2-a,c=3+a,∵b,c都是非負數(shù),∴,解不等式①得,a≤2,解不等式②得,a≥-3,∴-3≤a≤2,又∵a是非負數(shù),∴0≤a≤2,∵d-a2-b-c=0∴d=a2+b+c=a2+(2-a)+3+a,=a2+5,∴對稱軸為直線a=0,∴a=0時,最小值=5,a=2時,最大值=22+5=1,∴5≤d≤1.故答案為:5≤d≤1.【題目點撥】本題考查了二次函數(shù)的最值問題,用a表示出b、c并求出a的取值范圍是解題的關(guān)鍵,難點在于整理出d關(guān)于a的函數(shù)關(guān)系式.16、菱形【題目詳解】解:如圖,連接AC、BD,∵E、F、G、H分別是矩形ABCD的AB、BC、CD、AD邊上的中點,∴EF=GH=AC,F(xiàn)G=EH=BD(三角形的中位線等于第三邊的一半),∵矩形ABCD的對角線AC=BD,∴EF=GH=FG=EH,∴四邊形EFGH是菱形.故答案為菱形.考點:三角形中位線定理;菱形的判定;矩形的性質(zhì).17、1.【分析】根據(jù)圓心角、弧、弦、弦心距之間的關(guān)系解答即可.【題目詳解】解:∵在⊙O中,,AB=1,
∴AC=AB=1.
故答案為1.【題目點撥】本題考查圓心角、弧、弦、弦心距之間的關(guān)系:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦、兩條弦的弦心距中有一組量相等,那么它們所對的其余各組量都分別相等.18、【分析】根據(jù)反比例函數(shù)的幾何意義可得直角三角形的面積;根據(jù)題意可得兩個直角三角形相似,而相似比就是直角三角形?AOB的兩條直角邊的比,從而得出答案.【題目詳解】過點A、B分別作AD⊥x軸,BE⊥x軸,垂足為D、E,∵頂點A,B恰好分別落在函數(shù),的圖象上∴又∵∠AOB=90°∴∠AOD=∠OBE∴∴則tan∠ABO=故本題答案為:.【題目點撥】本題考查了反比例函數(shù),相似三角形和三角函數(shù)的綜合題型,連接輔助線是解題的關(guān)鍵.三、解答題(共66分)19、(1)40人;1;(2)平均數(shù)是15;眾數(shù)16;中位數(shù)15.【分析】(1)用13歲年齡的人數(shù)除以13歲年齡的人數(shù)所占的百分比,即可得本次接受調(diào)查的跳水運動員人數(shù);用16歲年齡的人數(shù)除以本次接受調(diào)查的跳水運動員人數(shù)即可求得m的值;(2)根據(jù)統(tǒng)計圖中給出的信息,結(jié)合求平均數(shù)、眾數(shù)、中位數(shù)的方法求解即可.【題目詳解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案為40,1.(2)觀察條形統(tǒng)計圖,∵,∴這組數(shù)據(jù)的平均數(shù)為15;∵在這組數(shù)據(jù)中,16出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為16;∵將這組數(shù)據(jù)按照從小到大的順序排列,其中處于中間的兩個數(shù)都是15,有,∴這組數(shù)據(jù)的中位數(shù)為15.【題目點撥】本題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,掌握平均數(shù)、眾數(shù)和中位數(shù)的定義是解題的關(guān)鍵.20、(1),;(2),.【分析】(1)先去括號,再利用直接開平方法解方程即可;(2)利用十字相乘法解方程即可.【題目詳解】(1),,,∴,.(2),(3x+2)(x-2)=0,∴,.【題目點撥】本題考查解一元二次方程,解一元二次方程的常用方法有:直接開平方法、配方法、公式法、因式分解法等,熟練掌握并靈活運用適當?shù)慕夥ㄊ墙忸}關(guān)鍵.21、y=﹣.【分析】根據(jù)了反比例函數(shù)圖象上點的坐標特征得到,解得,則可確定M點的坐標為,然后設(shè)反比例函數(shù)解析式為,再利用反比例函數(shù)圖象上點的坐標特征得到.【題目詳解】解:根據(jù)題意得,解得,所以點的坐標為,設(shè)反比例函數(shù)解析式為,則,所以反比例函數(shù)解析式為.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)為常數(shù),的圖象是雙曲線,圖象上的點的橫縱坐標的積是定值k,即.22、(1)為y=﹣10x+2;(2)3元時每天獲取的利潤最大利潤是4元;(3)45≤x≤1.【分析】(1)根據(jù)每上漲1元,銷量下降10件即可求解;(2)根據(jù)每天獲得利潤等于單件利潤乘以銷售量列出二次函數(shù),再根據(jù)二次函數(shù)的性質(zhì)即可求解;(3)根據(jù)每天剩余利潤不低于3600元和二次函數(shù)圖象即可求解.【題目詳解】解:(1)根據(jù)題意,得y=250﹣10(x﹣45)=﹣10x+2.答:每天的銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y=﹣10x+2.(2)銷售量不低于240件,得﹣10x+2≥240解得x≤3,∴30<x≤3.設(shè)銷售單價為x元時,每天獲取的利潤是w元,根據(jù)題意,得w=(x﹣30)(﹣10x+2)=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000∵﹣10<0,所以x<50時,w隨x的增大而增大,所以當x=3時,w有最大值,w的最大值為﹣10(3﹣50)2+4000=4.答:銷售單價為3元時,每天獲取的利潤最大,最大利潤是4元.(3)根據(jù)題意,得w﹣150=﹣10x2+1000x﹣21000﹣150=3600即﹣10(x﹣50)2=﹣250解得x1=1,x2=45,根據(jù)圖象得,當45≤x≤1時,捐款后每天剩余利潤不低于3600元.【題目點撥】本題考查了二次函數(shù)的應(yīng)用,利用二次函數(shù)的性質(zhì)求最大值,正確求出二次函數(shù)關(guān)系式,理解二次函數(shù)的性質(zhì)是解題的關(guān)鍵.23、(1);(1)【解題分析】試題分析:(1)方程有兩個實數(shù)根,可得代入可解出的取值范圍;
(1)由韋達定理可知,列出等式,可得出的值.試題解析:(1)∵Δ=4(k-1)1-4k1≥0,∴-8k+4≥0,∴k≤;(1)∵x1+x1=1(k-1),x1x1=k1,∴1(k-1)=1-k1,∴k1=1,k1=-3.∵k≤,∴k=-3.24、(1);(2).【分析】(1)根據(jù)?>0列式求解即可;(2)先求出x1+x2與x1·x2的值,然后代入求解即可.【題目詳解】(1)原方程有兩個不相等的實數(shù)根,,解得:.(2)由根與系數(shù)的關(guān)系得,.,,解得:或,又,.【題目點撥】本題考查了一元二次方程根的判別式,以及一元二次方程根與系數(shù)的關(guān)系,熟練掌握各知識點是解答本題的關(guān)鍵.25、(1)詳見解析;(2)y=-4x2,開口向下;(3)y=-x-1或y=-3x-1,函數(shù)在二四象限【分析】(1)根據(jù)正比例函數(shù)的定義求出m,再確定m-2的正負,即可確定增減性;(2)根據(jù)二次函數(shù)的定義求出m,再確定m-2的值,即可確定函數(shù)解析式和開口方向;(3)由題意可得-2=-1,求出m即可確定函數(shù)解析式和圖像所在象限.【題目詳解】解:(1)若為正比例函數(shù)則-2=1,m=±,∴m-2<0,函數(shù)y隨x增大而減??;(2)若函數(shù)為二次函數(shù),-2=2且m-2≠0,∴m=-2,函數(shù)解析式為y=-4x2,開口向下(3)若函數(shù)為反比例函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國城市公共汽車客運行業(yè)發(fā)展前景及投資規(guī)劃研究報告版
- 2024-2030年中國地毯行業(yè)競爭格局及未來投資趨勢分析報告
- 2024-2030年中國國際貨代行業(yè)未來發(fā)展趨勢及投資風(fēng)險分析報告
- 2024年度物聯(lián)網(wǎng)(IoT)設(shè)備控制系統(tǒng)軟件開發(fā)合同技術(shù)集成與擴展2篇
- 茂名職業(yè)技術(shù)學(xué)院《國學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年深圳子女撫養(yǎng)權(quán)協(xié)議書樣本3篇
- 中國日報2019年9月25日
- 馬鞍山職業(yè)技術(shù)學(xué)院《美術(shù)基礎(chǔ)與欣賞》2023-2024學(xué)年第一學(xué)期期末試卷
- 呂梁學(xué)院《信息安全綜合》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度醫(yī)院護工工作環(huán)境與職業(yè)健康保護協(xié)議下載3篇
- 焊工工藝學(xué)(A)試卷
- 高級英語(1)智慧樹知到答案章節(jié)測試2023年齊魯工業(yè)大學(xué)
- 脫不花三十天溝通訓(xùn)練營
- 機床操作說明書
- 義務(wù)教育物理課程標準(2022年版)測試卷(含答案)
- NY/T 396-2000農(nóng)用水源環(huán)境質(zhì)量監(jiān)測技術(shù)規(guī)范
- GB/T 39901-2021乘用車自動緊急制動系統(tǒng)(AEBS)性能要求及試驗方法
- GB/T 36652-2018TFT混合液晶材料規(guī)范
- 國際商務(wù)談判 袁其剛課件 第四章-國際商務(wù)談判的結(jié)構(gòu)和過程
- 國際商法教案(20092新版)
- 江蘇開放大學(xué)漢語作為第二語言教學(xué)概論期末復(fù)習(xí)題
評論
0/150
提交評論