2024屆江蘇省句容市崇明片九年級數(shù)學第一學期期末調(diào)研模擬試題含解析_第1頁
2024屆江蘇省句容市崇明片九年級數(shù)學第一學期期末調(diào)研模擬試題含解析_第2頁
2024屆江蘇省句容市崇明片九年級數(shù)學第一學期期末調(diào)研模擬試題含解析_第3頁
2024屆江蘇省句容市崇明片九年級數(shù)學第一學期期末調(diào)研模擬試題含解析_第4頁
2024屆江蘇省句容市崇明片九年級數(shù)學第一學期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省句容市崇明片九年級數(shù)學第一學期期末調(diào)研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖的幾何體由6個相同的小正方體搭成,它的主視圖是()A. B. C. D.2.如圖,AB是⊙O的切線,B為切點,AO與⊙O交于點C,若∠BAO=40°,則∠OCB的度數(shù)為()A.40° B.50° C.65° D.75°3.如圖.已知的半徑為3,,點為上一動點.以為邊作等邊,則線段的長的最大值為()A.9 B.11 C.12 D.144.如圖,在△ABC中,點D、E分別是AB、AC的中點,若△ADE的面積為4,則△ABC的面積為()A.8 B.12 C.14 D.165.如圖,AC是電桿AB的一根拉線,現(xiàn)測得BC=6米,∠ABC=90°,∠ACB=52°,則拉線AC的長為(

)米.A.

B.

C.

D.6.一個幾何體的三視圖如圖所示,則這個幾何體是()A.球體 B.圓錐 C.棱柱 D.圓柱7.如圖,在中,點在邊上,且,,過點作,交邊于點,將沿著折疊,得,與邊分別交于點.若的面積為,則四邊形的面積是()A. B. C. D.8.如圖,是的中位線,則的值為()A. B. C. D.9.如圖,隨意向水平放置的大⊙O內(nèi)部區(qū)域拋一個小球,則小球落在小⊙O內(nèi)部(陰影)區(qū)域的概率為()A. B. C. D.10.下列命題中,是真命題的是A.兩條對角線互相平分的四邊形是平行四邊形B.兩條對角線相等的四邊形是矩形C.兩條對角線互相垂直的四邊形是菱形D.兩條對角線互相垂直且相等的四邊形是正方形二、填空題(每小題3分,共24分)11.已知關(guān)于x的方程的一個根是1,則k的值為__________.12.在中,,則的面積是__________.13.數(shù)學學習應(yīng)經(jīng)歷“觀察、實驗、猜想、證明”等過程.下表是幾位數(shù)學家“拋擲硬幣”的實驗數(shù)據(jù):實驗者棣莫弗蒲豐德·摩根費勒皮爾遜羅曼諾夫斯基擲幣次數(shù)204840406140100003600080640出現(xiàn)“正面朝上”的次數(shù)10612048310949791803139699頻率0.5180.5070.5060.4980.5010.492請根據(jù)以上實驗數(shù)據(jù),估計硬幣出現(xiàn)“正面朝上”的概率為__________.(精確到0.1)14.計算:=________.15.如圖,菱形ABCD和菱形ECGF的邊長分別為2和3,點D在CE上,且∠A=120°,B,C,G三點在同一直線上,則BD與CF的位置關(guān)系是_____;△BDF的面積是_____.16.如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10=.17.如圖,將一個裝有水的杯子傾斜放置在水平的桌面上,其截面可看作一個寬BC=6厘米,長CD=16厘米的矩形.當水面觸到杯口邊緣時,邊CD恰有一半露出水面,那么此時水面高度是______厘米.18.如圖,正方形的對角線上有一點,且,點在的延長線上,連接,過點作,交的延長線于點,若,,則線段的長是________.三、解答題(共66分)19.(10分)某日,深圳高級中學(集團)南北校區(qū)初三學生參加東校區(qū)下午時的交流活動,南校區(qū)學生中午乘坐校車出發(fā),沿正北方向行12公里到達北校區(qū),然后南北校區(qū)一同前往東校區(qū)(等待時間不計).如圖所示,已知東校區(qū)在南校區(qū)北偏東方向,在北校區(qū)北偏東方向.校車行駛狀態(tài)的平均速度為,途中一共經(jīng)過30個紅綠燈,平均每個紅綠燈等待時間為30秒.(1)求北校區(qū)到東校區(qū)的距離;(2)通過計算,說明南北校區(qū)學生能否在前到達東校區(qū).(本題參考數(shù)據(jù):,)20.(6分)已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).(1)求證:AC=BD;(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.21.(6分)如圖,中,,以為直徑作,交于點,交于點.(1)求證:.(2)若,求的度數(shù).22.(8分)如圖,在平面直角坐標系中,一次函數(shù)的圖像與反比例函數(shù)的圖像在第二象限交于點,與軸交于點,點在軸上,滿足條件:,且,點的坐標為,。(1)求反比例函數(shù)的表達式;(2)直接寫出當時,的解集。23.(8分)已知△ABC,AB=AC,BD是∠ABC的角平分線,EF是BD的中垂線,且分別交BC于點E,交AB于點F,交BD于點K,連接DE,DF.(1)證明:DE//AB;(2)若CD=3,求四邊形BEDF的周長.24.(8分)問題背景如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形.類比探究如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明.(2)△DEF是否為正三角形?請說明理由.(3)進一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè)BD=a,AD=b,AB=c,請?zhí)剿鱝,b,c滿足的等量關(guān)系.25.(10分)2018年非洲豬瘟疫情暴發(fā)后,專家預(yù)測,2019年我市豬肉售價將逐月上漲,每千克豬肉的售價y1(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足一次函數(shù)關(guān)系,如下表所示.每千克豬肉的成本y2(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為9元,如圖所示.月份x…3456…售價y1/元…12141618…(1)求y1與x之間的函數(shù)關(guān)系式.(2)求y2與x之間的函數(shù)關(guān)系式.(3)設(shè)銷售每千克豬肉所獲得的利潤為w(元),求w與x之間的函數(shù)關(guān)系式,哪個月份銷售每千克豬肉所第獲得的利潤最大?最大利潤是多少元?26.(10分)如圖1,將邊長為的正方形如圖放置在直角坐標系中.(1)如圖2,若將正方形繞點順時針旋轉(zhuǎn)時,求點的坐標;(2)如圖3,若將正方形繞點順時針旋轉(zhuǎn)時,求點的坐標.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)從正面看得到的視圖是主視圖,可得答案.【題目詳解】從正面看有三列,從左起第一列有兩個正方形,第二列有兩個正方形,第三列有一個正方形,故A符合題意,故選A.【題目點撥】本題考查了簡單組合體的三視圖,從正面看得到的視圖是主視圖.2、C【題目詳解】∵AB是⊙O的切線,∴AB⊥OA,即∠OBA=90°.∵∠BAO=40°,∴∠BOA=50°.∵OB=OC,∴∠OCB=.故選C.3、B【分析】以O(shè)P為邊向下作等邊△POH,連接AH,根據(jù)等邊三角形的性質(zhì)通過“邊角邊”證明△HPA≌△OPM,則AH=OM,然后根據(jù)AH≤OH+AO即可得解.【題目詳解】解:如圖,以O(shè)P為邊向下作等邊△POH,連接AH,∵△POH,△PAM都是等邊三角形,∴PH=PO,PA=PM,∠PHO=∠APM=60°,∴∠HPA=∠OPM,∴△HPA≌△OPM(SAS),∴AH=OM,∵AH≤OH+AO,即AH≤11,∴AH的最大值為11,則OM的最大值為11.故選B.【題目點撥】本題主要考查等邊三角形的性質(zhì),全等三角形的判定與性質(zhì)等,解此題的關(guān)鍵在于熟練掌握其知識點,難點在于作輔助線構(gòu)造等邊三角形.4、D【分析】直接利用三角形中位線定理得出DE∥BC,DE=BC,再利用相似三角形的判定與性質(zhì)得出答案.【題目詳解】解:∵在△ABC中,點D、E分別是AB、AC的中點,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴,∵△ADE的面積為4,∴△ABC的面積為:16,故選D.【題目點撥】考查了三角形的中位線以及相似三角形的判定與性質(zhì),正確得出△ADE∽△ABC是解題關(guān)鍵.5、C【分析】根據(jù)余弦定義:即可解答.【題目詳解】解:,,米,米;故選C.【題目點撥】此題考查了解直角三角形的應(yīng)用,將其轉(zhuǎn)化為解直角三角形的問題是本題的關(guān)鍵,用到的知識點是余弦的定義.6、D【解題分析】試題分析:觀察可知,這個幾何體的俯視圖為圓,主視圖與左視圖都是矩形,所以這個幾何體是圓柱,故答案選D.考點:幾何體的三視圖.7、B【分析】由平行線的性質(zhì)可得,,可設(shè)AH=5a,HP=3a,求出S△ADE=,由平行線的性質(zhì)可得,可得S△FGM=2,再利用S四邊形DEGF=S△DEM-S△FGM,即可得到答案.【題目詳解】解:如圖,連接AM,交DE于點H,交BC于點P,

∵DE∥BC,

∴,∴∵的面積為∴S△ADE=×32=設(shè)AH=5a,HP=3a

∵沿著折疊

∴AH=HM=5a,S△ADE=S△DEM=

∴PM=2a,

∵DE∥BC

∴S△FGM=2∴S四邊形DEGF=S△DEM-S△FGM=-2=

故選:B.【題目點撥】本題考查了折疊變換,平行線的性質(zhì),相似三角形的性質(zhì),熟練運用平行線的性質(zhì)是本題的關(guān)鍵.8、B【分析】由中位線的性質(zhì)得到DE∥AC,DE=AC,可知△BDE∽△BCA,再根據(jù)相似三角形面積比等于相似比的平方可得,從而得出的值.【題目詳解】∵DE是△ABC的中位線,∴DE∥AC,DE=AC∴△BDE∽△BCA∴∴故選B.【題目點撥】本題考查了中位線的性質(zhì),以及相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握相似三角形的面積比等于相似比的平方.9、B【分析】針扎到內(nèi)切圓區(qū)域的概率就是內(nèi)切圓的面積與外切圓面積的比.【題目詳解】解:∵如圖所示的正三角形,∴∠CAB=60°,∴∠OAB=30°,∠OBA=90°,設(shè)OB=a,則OA=2a,則小球落在小⊙O內(nèi)部(陰影)區(qū)域的概率為.故選:B.【題目點撥】本題考查了概率問題,掌握圓的面積公式是解題的關(guān)鍵.10、A【解題分析】根據(jù)特殊四邊形的判定方法進行判斷.對角線相等的平行四邊形是矩形;對角線互相平分的四邊形是平行四邊形;對角線互相垂直的平行四邊形是菱形;對角線互相垂直且相等的平行四邊形是正方形二、填空題(每小題3分,共24分)11、-1【分析】根據(jù)一元二次方程的定義,把x=1代入方程得關(guān)于的方程,然后解關(guān)于的方程即可.【題目詳解】解:把x=1代入方程,得:1+k+3=0,解得:k=-1,故答案為:-1.【題目點撥】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.12、24【分析】如圖,由三角函數(shù)的定義可得,可得AB=,利用勾股定理可求出AC的長,根據(jù)三角形面積公式求出△ABC的面積即可.【題目詳解】∵,∴AB=,∴()2=AC2+BC2,∵BC=8,∴25AC2=9AC2+9×64,解得:AC=6(負值舍去),∴△ABC的面積是×8×6=24,故答案為:24【題目點撥】本題考查三角函數(shù)的定義,在直角三角形中,銳角的正弦是角的對邊與斜邊的比值;余弦是角的鄰邊與斜邊的比值;正切是角的對邊與鄰邊的比值;熟練掌握三角函數(shù)的定義是解題關(guān)鍵.13、0.1【分析】由于表中硬幣出現(xiàn)“正面朝上”的頻率在0.1左右波動,則根據(jù)頻率估計概率可得到硬幣出現(xiàn)“正面朝上”的概率為0.1.【題目詳解】解:因為表中硬幣出現(xiàn)“正面朝上”的頻率在0.1左右波動,

所以估計硬幣出現(xiàn)“正面朝上”的概率為0.1.

故答案為0.1.【題目點撥】本題考查了利用頻率估計概率,隨實驗次數(shù)的增多,值越來越精確.14、-1【分析】根據(jù)零指數(shù)冪及特殊角的三角函數(shù)值計算即可.【題目詳解】解:原式=1-4×=-1,故答案為:-1.【題目點撥】本題考查了實數(shù)的運算、零指數(shù)冪、特殊角的三角函數(shù)值,屬于基礎(chǔ)題,解答本題的關(guān)鍵是熟練每部分的運算法則.15、平行【分析】由菱形的性質(zhì)易求∠DBC=∠FCG=30°,進而證明BD∥CF;設(shè)BF交CE于點H,根據(jù)菱形的對邊平行,利用相似三角形對應(yīng)邊成比例列式求出CH,然后求出DH以及點B到CD的距離和點G到CE的距離,最后根據(jù)三角形的面積公式列式進行計算即可得解.【題目詳解】解:∵四邊形ABCD和四邊形ECGF是菱形,∴AB∥CE,∵∠A=120°,∴∠ABC=∠ECG=60°,∴∠DBC=∠FCG=30°,∴BD∥CF;如圖,設(shè)BF交CE于點H,∵CE∥GF,∴△BCH∽△BGF,∴=,即=,解得:CH=1.2,∴DH=CD﹣CH=2﹣1.2=0.8,∵∠A=120°,∠ABC=∠ECG=60°,∴點B到CD的距離為2×=,點G到CE的距離為3×=,∴陰影部分的面積=.故答案為:平行;.【題目點撥】本題考查了菱形的性質(zhì),相似三角形的判定和性質(zhì)以及解直角三角形,求出DH的長度以及點B到CD的距離和點G到CE的距離是解題的關(guān)鍵.16、π.【解題分析】圖1,過點O做OE⊥AC,OF⊥BC,垂足為E.

F,則∠OEC=∠OFC=90°∵∠C=90°∴四邊形OECF為矩形∵OE=OF∴矩形OECF為正方形設(shè)圓O的半徑為r,則OE=OF=r,AD=AE=3?r,BD=4?r∴3?r+4?r=5,r==1∴S1=π×12=π圖2,由S△ABC=×3×4=×5×CD∴CD=由勾股定理得:AD=,BD=5?=,由(1)得:⊙O的半徑=,⊙E的半徑=,∴S1+S2=π×()2+π×()2=π.圖3,由S△CDB=××=×4×MD∴MD=,由勾股定理得:CM=,MB=4?=,由(1)得:⊙O的半徑=,⊙E的半徑=,∴⊙F的半徑=,∴S1+S2+S3=π×()2+π×()2+π×()2=π17、【分析】先由勾股定理求出,再過點作于,由的比例線段求得結(jié)果即可.【題目詳解】解:過點作于,如圖所示:∵BC=6厘米,CD=16厘米,CD厘米,,由勾股定理得:,,,,,,即,.故答案為:.【題目點撥】此題主要考查了勾股定理的應(yīng)用以及相似三角形的判定與性質(zhì),正確把握相關(guān)性質(zhì)是解題關(guān)鍵.18、5【分析】如圖,作于.利用勾股定理求出,再利用四點共圓證明△EFG是等腰直角三角形,從而可得FG的長,再利用勾股定理在中求出CG,由即可解決問題.【題目詳解】解:如圖,作于.四邊形是正方形,,,,,,,,,,,在中,,,,,,四點共圓,,,∴在中,,∴在中,,,故答案為:.【題目點撥】本題考查正方形的性質(zhì)、等腰直角三角形性質(zhì)及判定、勾股定理等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考填空題中的壓軸題.三、解答題(共66分)19、(1);(2)能.【分析】(1)過點作于點,然后在兩個直角三角形中通過三角函數(shù)分別計算出AE、AC即可;(2)算出總路程求出汽車行駛的時間,加上等紅綠燈的時間即為總時間,即可作出判斷.【題目詳解】解:(1)過點作于點.依題意有:,,,則,∵,∴,∴(2)總用時為:分鐘分鐘,∴能規(guī)定時間前到達.【題目點撥】本題考查了三角函數(shù)的應(yīng)用,把非直角三角形的問題通過作輔助線化為直角三角形的問題是解題關(guān)鍵.20、(1)證明見解析;(2)8﹣.【分析】(1)過O作OE⊥AB,根據(jù)垂徑定理得到AE=BE,CE=DE,從而得到AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,連接OC,OA,再根據(jù)勾股定理求出CE及AE的長,根據(jù)AC=AE﹣CE即可得出結(jié)論.【題目詳解】解:(1)證明:如答圖,過點O作OE⊥AB于點E,∵AE=BE,CE=DE,∴BE﹣DE=AE﹣CE,即AC=BD.(2)由(1)可知,OE⊥AB且OE⊥CD,連接OC,OA,∵OA=10,OC=8,OE=6,∴.∴AC=AE﹣CE=8﹣.【題目點撥】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.21、(1)證明見解析;(2)80°【分析】(1)連接AD,根據(jù)圓周角定理和等腰三角形的三線合一,可得,利用相等的圓周角所對的弧相等即可得證;(2)連接BE,利用同弧所對的圓周角相等可得,再利用等腰三角形的性質(zhì)可求得利用圓周角定理即可求解.【題目詳解】解:(1)連接AD,,∵為的直徑,∴,即,∵在中,,∴,∴;(2)連接BE,,∵,∴,,∵,∴,∴的度數(shù)為.【題目點撥】本題考查圓周角定理,等腰三角形的性質(zhì),弧、弦、圓心角和圓周角之間的關(guān)系,熟練應(yīng)用圓的基本性質(zhì)定理是解題的關(guān)鍵.22、(1);(2)【解題分析】(1)過點B作BH⊥x軸于點H,證明≌得到BH與CH的長度,便可求得B點的坐標,進而求得反比例函數(shù)解析式;(2)觀察函數(shù)圖象,當一次函數(shù)圖象在反比例函數(shù)圖象下方時的自變量x的取值范圍便是結(jié)果.【題目詳解】解:(1)如圖作軸于點則∴∵點的坐標為∴∵∴,在和中有∴≌∴,∴,即∴∴反比例函數(shù)解析式為(2)因為在第二象限中,點右側(cè)一次函數(shù)的圖像在反比例函數(shù)圖像的下方,所以當時,的解集為.【題目點撥】本題考查了反比例函數(shù)和一次函數(shù)的交點問題,熟練掌握函數(shù)解析式的求法以及利用數(shù)形結(jié)合根據(jù)函數(shù)圖象的上下位置關(guān)系得出不等式的解集是重點.23、(1)見詳解;(2)12【分析】(1)由角平分線性質(zhì),得到∠ABD=∠CBD,由EF是BD的中垂線,則BE=DE,則∠CBD=∠EDB,則∠ABD=∠EDB,即可得到答案;(2)先證明四邊形BEDF是菱形,由DE∥AB,得到DE=CD=3,即可求出周長;【題目詳解】(1)證明:∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,∵EF是BD的中垂線,∴BE=DE,BF=DF,∴∠CBD=∠EDB,∴∠ABD=∠EDB,∴DE∥AB;(2)解:與(1)同理,可證DF∥BC,∴四邊形BEDF是平行四邊形,∵BE=DE,∴四邊形BEDF是菱形,∵AB=BC,DE∥AB,∴∠C=∠ABC=∠DEC,∴DE=CD=3,∴菱形BEDF的周長為:.【題目點撥】本題考查了菱形的判定和性質(zhì),垂直平分線的性質(zhì),角平分線的性質(zhì),以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練掌握所學的性質(zhì),從而正確的進行推導(dǎo).24、(1)見解析;(1)△DEF是正三角形;理由見解析;(3)c1=a1+ab+b1【解題分析】試題分析:(1)由正三角形的性質(zhì)得∠CAB=∠ABC=∠BCA=60°,AB=BC,證出∠ABD=∠BCE,由ASA證明△ABD≌△BCE即可;、(1)由全等三角形的性質(zhì)得出∠ADB=∠BEC=∠CFA,證出∠FDE=∠DEF=∠EFD,即可得出結(jié)論;(3)作AG⊥BD于G,由正三角形的性質(zhì)得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出結(jié)論.試題解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如圖所示:∵△DEF是正三角形,∴∠ADG=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論