單片集成MEMS技術(shù)中英文翻譯、外文文獻(xiàn)翻譯、外文翻譯_第1頁(yè)
單片集成MEMS技術(shù)中英文翻譯、外文文獻(xiàn)翻譯、外文翻譯_第2頁(yè)
單片集成MEMS技術(shù)中英文翻譯、外文文獻(xiàn)翻譯、外文翻譯_第3頁(yè)
單片集成MEMS技術(shù)中英文翻譯、外文文獻(xiàn)翻譯、外文翻譯_第4頁(yè)
單片集成MEMS技術(shù)中英文翻譯、外文文獻(xiàn)翻譯、外文翻譯_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGE(學(xué)號(hào)):XXX

XXXXXXX設(shè)計(jì)(XX)譯文

姓名學(xué)院專業(yè)班級(jí)指導(dǎo)教師

20XX年

06月15

日MonolithicallyintegratedMEMStechnologyInthepast20years,CMOStechnologyhasbecomeamajorintegratedcircuitmanufacturingtechnology,manufacturingcostsdeclineatthesametime,yieldandproductionhasalsobeengreatlyimproved,COMStechnologywillcontinuetoincreaseintegrationandreducedevelopmentofaspecialsize.Today,CMOSintegratedprocessnotonlybeusedinthedesignofintegratedcircuits,butalsotobeusedinmanymicro-sensorsandmicro-actuator,soitcanbeintegratedcircuitsandmicro-sensorintegratedwithapowerful,intelligentsensors.Withmicro-sensorconstantlyexpandingthescopeofapplicationofthesensorincreasinglyhighdemandsofthefuturemicrosensorthemainrequirementsare:miniaturizationandintegrationoflow-powerandlow-costhigh-precisionandlonglife;-andintelligent.Micromachinedsiliconintegratedcircuitsandtheintegrationofintegration,tomeettheabove-mentionedrequirements.Atpresent,themajorityofproductsintegratedsensorusinghybridintegrated,monolithicintegrationofaverysmallpercentage.Andtherealizationofsingle-chipintegrationisthekeytoachievingintelligentsensors,inparticularmonolithicintegratedMEMSsensortechnologyistoday'ssystem-on-chipcanachieveoneofthekeytechnologies.Clearly,monolithicintegrationofthevarioustechnicaldifficultiesanalysisofMEMSandhavealreadygiventhevariousmonolithicintegrationofMEMStechnologyisessential.1.MonolithicintegrationofMEMStechnologyadvantagesandthechallengesfacing。MEMSandCMOSachieveworkingtogether,theseparatemanufacturingCMOSMEMSsensorsandintegratedcircuits,andthencutfromtheirchips,fixedinacommonsubstrate,and,bondedconnection,therebybringingthetwointegration,Thisistheso-calledmixed(hybrid)method.ThismethoddoesnotproduceMEMSmanufacturingprocessforCMOScircuitspollutionAtthesametime,boththeproductionprocessNoninterference.However,duetosignalbondingpointandfuses,resultinginhigh-frequencyapplications,declineinthequalityofsignaltransmission,andtodeveloptwoproductionlinestoincreasethecostoftheproduct.Inordertoaddresssomeperformanceissues,andlowermanufacturingcosts,andproposedtodointhepartofMEMSandCMOScircuitswithasubstrate,whichisproducedcompatiblewithCMOStechnologyormonolithicintegratedMEMStechnologycalledCMOS-MEMStechnology.Thismethodrelativehybridmethodgenerallyhavethefollowingadvantages:First,theperformancecanbegreatlyimproved,becauseparasiticcapacitanceandcrosstalkphenomenoncanbesignificantlyreduced;second,hybridmethodrequiressophisticatedtechnologytoreducepackagingSensorInterfaceaffected,andmonolithicintegrationrequirespackagingtechnologyisrelativelysimpleandtherefore,lowercostsensors;third,monolithicintegratedsensorarraysensortechnologyistheneedtoovercomethearraysensorandexternaldecodingcircuitaneffectiveinterconnectbottleneck;Fourth,thedevelopmentofmonolithicintegratedmixeddevelopmentofMEMSproductsthanMEMSproductsforashorttime,andtodeveloplowcost.MonolithicintegrationofMEMStechnologyundersomeofMEMSdevicesandCMOScircuitcanbedividedintodifferentorderprocessingbeforeCMOS(pre-CMOS),mixedCMOS(intermediate-CMOS),andaftertheCMOS(post-CMOS)integratedapproach.Post-CMOSapproachisintheprocessingofsiliconCMOScircuitsEnd,throughsomeadditionalMEMSmicro-processingtechnologytoachievemonolithicintegratedMEMSsystem,atpresent,monolithicintegrationofMEMStechnologyinthiswaymainlybased.Post-CMOSapproachisthemainissueonMEMSprocessingtemperatureCMOScircuitperformanceinfrontofanimpactonmoreseriousisthatthetechnologybehindhigh-temperatureMEMSprocessingtemperatureandmetalCMOSprocessaheadofincompatibility.InthepresentstudyasthemostpolysiliconlayerstructureoftheMEMSexample,thedensificationofphosphorusglassannealingtemperatureis950℃duetoastructuralpolysiliconlayerofstressannealingtemperaturereached1050℃,whichwillenableCMOSdevicesjunctiondepthmigrationoccurred.Inparticular800℃shallowjunctiondevicesjunctiondepthmigrationwillaffectdeviceperformance.Ontheotherhand,theconventionalaluminummetallizationprocess,whenthetemperaturereaches400-450℃,thereliabilityofCMOScircuitswillbeseverelyaffected.Fromtheabovewecanseethat:howtoovercomebehindhigh-temperatureMEMSprocessingtemperatureonthemicro-structureofthefrontendprocessinghasbeentheimpactofCMOScircuitsintegratedMEMSsingle-chipsolutioniskeytothesystem.Atpresent,theinternationalcommunityisessentialtoresolvethisissuethroughthreeways:Firstistheinterconnectionofrefractorymetalsinsteadofaluminummetalinterconnect,forexample,theUniversityofBerkeleytoreplacetungstenaluminummetalinterconnectprogrammes,suchfollow-upincreasedtoleranceMEMSprocessingforhightemperature;Thesecondisproducedbyfindinglowtemperaturemechanicalpropertiesandexcellentsubstitutematerialsasstructuralpolysiliconlayer;thirdwayistouseitsexistingstructureCMOSMEMSlayerasalayerstructure.Pre-CMOSintegratedapproachistocreatestructureMEMSmanufacturingCMOScircuits,althoughthisintegratedCMOStechnologytoovercomepost-CMOSmethodofhigh-temperatureMEMSTechnologyonCMOScircuitsaffected,butbecauseoftheexistenceofmicro-verticalstructure,andtherefore,theresensorandcircuitinterconnectionlevelcoverage,butalsointheprocessofCMOScircuitsonthemicro-structureprotectionisalsoaneedtoconsidertheissue.Evenfine-tunetheoptimizationofCMOSprocess,suchas:gateoxidemaybeheavilydopedlayerimpactofthestructure.Inaddition,theMEMStechnologycannotprocessanyofthemetalorothermaterials,suchaspiezoelectricpolymers,andsoon,makesthismethodonlysuitableforsomespecialapplications.Intermediate-CMOScircuitsintheCMOSproductionprocesstoinsertsomeMEMSmicro-processingtechnologytoachievemonolithicintegratedMEMSapproach.Thisapproachhasbeenverymatureandhavealotofcommercializationofproducts,isthefirststudyofasingle-chipintegrationmethodistosolvethepre-andpost-CMOSCMOSmethodeffectivemethodproblems,butduetotheneedfortheexistingstandardCMOSorlargerBiCMOSprocesschanges,therefore,theuseofthismethodislimited.2.ThemainmonolithicintegratedMEMStechnologystatusAtpresent,themonolithicintegrationofMEMStechnologymainlytopost-CMOStechnologies,throughaseriesofcompatiblewithCMOSprocessonthesurfacemicro-machiningandprocessingtoachievemonolithicintegrationofMEMS.Canbedividedintotwokinds:oneisinthetoplayerCMOSstructuretoastructurelayerdepositionmicro-machining;theotherisdirectlyCMOSlayerstructureastheoriginalstructureoftheMEMSmicro-machined.2.1DepositionofnewstructuralmaterialsforthestructureofintegratedMEMStechnology2.1.1Polysiliconlayerstructureasthesurfacemicro-machiningtechnologyintegrationThisprocessistypicalofmodulesdevelopedattheUniversityofBerkeleyIntegratedCMOSandMEMSTechnology(modularintegrationofCMOSwithmicro-structures,MICS),thismethodisforthemicro-structuralpolysiliconlayer,phosphorussiliconglass(PSG)asasacrificiallayerThesurfacemicro-machiningtechnology.Arefractorymetaltungstenmetalinterconnectinsteadofaluminummetalinterconnecttobearbehindthepolysiliconproductionneedsofmicro-structureofhigh-temperature,butat600℃,tungstenandsiliconformeasilyresponsebytheUniversityofBerkeleyintheContactsreleaseaTiNbarrierlayertoaddressthisproblem.MICSprocessisthebasicprocess:thecompletionoftungstenmetalCMOSprocess,thedepositionof300×10-10nmlow-temperatureoxide(LTO),andthen,lowpressurechemicalvapordeposition200×10-10nmprotectionofthesiliconnitridefilmhasbeenproducedCMOScircuits,micro-structureandcorrosionEndCMOScircuitcontacthole,No.1layerdepositionscenedopedpolysilicon(350×10-10),asCMOScircuitsandmicro-structureofinterconnectionlines,intheabovedepositiontoaumPSGthickasasacrificiallayerthicknessanddepositionof2umpolysiliconlayerstructure.No.2throughanotherlayerpolysilicondepositionofalayerof0.5umPSG,aswellasnitrogenenvironmentinthe1000℃rapidthermalannealingfor1minasastructuretoreducestresspolysiliconlayer.Finally,thestructureofgraphicsandpolysiliconetchingoutitscorrosionlayerbelowthesacrifices(PSG)forthereleaseofmicro-structure.2.1.2Othermaterialsforthestructureofthesurfacemicro-machiningtechnologyintegrationPolycrystallinesilicongermaniumpolysiliconnotonlywiththeexcellentmechanicalpropertiessimilar,and,lowtemperaturedepositioncompatiblewiththeCMOSprocess,therefore,isbeingextensivelystudied.DevelopedattheUniversityofBerkeley-basedstructurallayerofsilicongermaniumtechnologyandMICStechnologysimilar.Majortechnologicalinnovations:First,theprotectivelayerusingdifferentmaterials,before835℃MICSprocessistheLPCVDsiliconnitride,andnowitisusingatwo-tierLTOandintermediatefolderisnotastereotypicalsilicon(a-Si)asaCMOScircuitprotectivelayer,inwhichthetwo-stepdepositionofa-Si,thefirststepinthedeposition450℃;stepdepositioninthe410℃,thiswillnotdamagethetemperatureofaluminummetalCMOScircuit;Second,thelowamylinplotstructureasatemperaturepolysiliconlayerofgermaniummaterials,thelowpressurechemicalvapordeposition(LPCVD)temperatureonly400℃usingrapidthermalannealingtemperatureofonly5.5℃for30s.MICSandthetemperaturepolysilicondepositionofmorethan600℃.Fromtheabovetwopoints,wecanseethatthewholefollow-upMEMSprocessingtemperaturedoesnotexceed450℃,therefore,notofaluminummetalinterconnectCMOScircuitshavegreatlyaffected.Aluminumusedasastructuralmaterialwillbeagreatsuccess,themostsuccessfulistheTexasInstrumentsdevelopedcryogenicsurfacemicro-machiningtechnology,andusethistechnologysuccessfullyproduceddigitalmicromirrordevice(DMD).Technicalinnovationintheuseofsputteringperformanceasaluminumstructuralmaterial,andusingphotoresistasasacrificiallayer,whichmakeslow-temperaturepost-processingproductionhasbeenbelowtheSRAMcellswerenotdamaged.Leadzirconatetitanate(PZT)ofthematerialhasanexcellentresultpiezoelectricproperties,pyroelectricpropertiesofferroelectricpropertiesanddielectricpropertiesandiswidelyusedinferroelectricmemory,aswellashigh-dielectricmaterials.Atthesametime,wecanalsouseleadzirconatetitanatepiezoelectriceffectproducedmicro-sensorsandmicro-actuators.PZTthinfilmsilicontechnologyandintegrationtechnologycompatible,suchasthepresentbasedonthemetal-organicchemicalvapordeposition(OCVD)MethodsPZTthinfilmstemperaturehasbeenreducedto430to75℃,thetemperatureislower,therefore,useofsuchmaterialsasstructurallayerisaveryhopefulandCMOSprocessintegration.2.2CMOSstructuretotheoriginallayertothestructureofintegratedMEMStechnology2.2.1Sacrificealuminummicro-machiningtechnologyIfCMOSmetalcompoundsusedfortheexpenseofmaterials,theremaybefullycompatiblewithCMOStechnologyandsurfacemicro-machiningsmallart,thismethodiscalledsacrificealuminumetching(sacrificialaluminumetching,SALE).InmanyCMOSprocess,usetwolayersofaluminumalloybyametallayer.No.1asasacrificiallayerofmetalwasremoved,cancreatemetaldielectriccompounds;Layer2andpassivationofthemetalcomponent,2-layermetalbetweentwodielectricbetweenappropriatestructure,theycouldserveasamirrorelectrodes,heatorelectricresistanceregulator.Thebasicprocessinclude:(1)theprotectionofelectricalcontactsarenotconnectedetching(2)corrosionsacrificealuminumlayer;(3)removalrinsedBoundarystructureinsidetheetchingagent;(4)-dryingbodies.2.2.2Monocrystalsiliconetchingandmetalactivationmethod.Monomersiliconetchingandmetalactivationmethod(singlecrystalreactiveetchingandmetallization,SCREAM)canbeusedformanufacturing,beam,thebridgestructure,andevensiliconcanbeusedtocreatemorecomplexstructures.ThisapproachstartsattheEndmanufacturesiliconCMOScircuits,firstofall,alayerofcoveragedepositioncontactholesiliconoxide,oxidelayertoprotectitfromthebackofCMOScircuitsaffected,andthroughreactiveionetching(RIE)ofthisgraphicsOxidelayershieldinglayer;thenRIEetchingsilicontrench,thedepthofupto10um,siliconoxidethinfilmdepositiondown,andthelevelofcoverageinthesidesurface.Byreactiveionetchingoftheoxidesurfaceleveloffduetoaverticalsurfacetobeprotected,thesecondreactiveionetchingsilicon;Finally,theisotropicetchsilicon,thereleaseofthemicrostructureofasuspension,atthesametime,etchingcontactholeoxides,andSputteringmetal,thislayerofmetaldepositiontotheaspectratioofthebeamintoacapacitiveelementswiththickresistmaskingagentforthegraphicsmodeofmetallayers.AseachstepofSCREAMarebelow300℃underthetemperatureand,therefore,iscompatiblewithCMOScircuits.2.2.3LargeaspectratioofCMOS-MEMSTechnologyGamegleMelloaUniversityandthedevelopmentofCMOS-compatibledryetchingmethod,whichisotropicsiliconetchapplicationshaveinsulationfilm,CMOSdielectricandmetallayersinthisprocess,notonlyforthemetalinterconnect,butalsoasamicro-mechanicalstructuretail.Basicprocess:First,thestandardCMOSprocessusingthree-metalprocesstoachieve0.5upmNWell,secondly,metallayers1and2wereusedaselectricalactivitylayer,andlayer3asamicro-machiningetchingmask.ApplicationofthecompoundCHF3/O2reactiveionetching(RIE),theentirechippassivationlayertoberemoved,inthethree-tierregionaldisconnectmetal,CMOSlaminatedfilmhasbeenetchedtothebasement,andabovecoveredwithLayer3CMOSmetalthinfilmlaminatedretainedintact;Finally,theuseofSP6/O2plasmaetchinginthemicro-structuralwallnotunderisotropicetchsiliconsubstrate.Narrowinsulatinglayerandconductivelayerfusedtocreatebeamsandbridges,suchas:Combdrivethemicro-structure.2.2.4ProcessingCMOS-MEMSTechnologyMainlythroughtheetchingofsiliconsubstrates,suchasprocessingtechnologytoformthenecessaryMEMSstructure,thetechnologymainlytotheUniversityofZurich-based.Canbeviewedinapositiveetchingsiliconsubstrate,butalsofromnegativeetchingsiliconsubstrate,usinganisotropicetching(100)inthedirectionofthecharacteristicsofthesiliconetchingcouldbepositivenotclosedmicro-structure,suchasbeamsandsupportfilm,thechoiceofetchingcanbetetramethylammoniumhydroxidesolution(TMATH)orethylenediaminesolution(EDP).Fromwhathasbeendonethroughthebackofthesiliconwaferofsiliconcanbepittingtheclosureofthedielectricfilm,theneedforadefinitionofadditionalpatchmaskthesizeofthecommonlyusedcandleisengravedonKOH.

XeF2dryetchingusingthepost-CMOStechnologyhasalsomadegreatdevelopment.XeP2isananisotropicetchingofsilicon,etchingathighvelocity,itisaninertgasxenonrarecompounds.XeP2neitherICinsulatinglayeretching,etchingaluminumormetalcompounds,therefore,andCMOScompatible.Aftertheappropriateregionaldesign,connectivityandprocessingmask,openedindesignatedpartsinsulatinglayer,sothatlocalexposuretosiliconsubstrateetchingagent.XeF2becausethatisnotetchedceramic,notplasticetchingandthussuitableforCMOSintegratedmicro-processingsystem.IntheuseofthismethodcanbecompletedwithCMOSchipmicro-etchingmaskinstitutions.3.DevelopmentTrendMonolithicallyintegratedMEMStechnologyhasbeendevelopingformorethan10years,hasbeentherapiddevelopmenthasalsoseentheemergenceofaMEMSmanufacturingservicesorganizationsandenterprises,whichwillbesomespecialorganizationsordirectlyfromtheICmanufacturerstoprovideMEMSprocessing.ICMicrosystemsrepresentativeofthedirectionoftechnologydevelopmentorganizations,includingtheUnitedStatesandEuropeTIMACMPMOSIS.Europractice;NorthKaluonastateCroonsIntegratedMicrosystemsInc.,inadditiontoprovidingthebasicCMOSprocess,thebodyalsoprovidesmicro-machiningandsurfaceemblemprocessing,LIGAprocess,aswellasmulti-userMEMStechnology;theUnitedStatesSandiaNationalLaboratorydevelopmentofthemulti-storeyhyperplanepolysilicontechnologyhasbeencommercializedinEuropeintheapplication-specificintegratedcircuitmanufacturingtechnologyresearch,includingAustriaMicrosystemsandSwitzerland'sEMMicroelectronics.Therearemanyspecialsilicon-basedsensortechnologyhasalsobeenfindingout,forexample,Germany'sLuobaiteboOxfamandtheNorwegianSensoNorcompanies.Judgingfromthecurrentsituation,integratedMEMStechnologywillhavethefollowingtrends:(1)post-CMOSintegratedapproachwillcontinuetobethemainfuturedevelopmentoftechnology,andtheexistinglaboratorieshavedevelopedvariouspost-CMOSsingle-chipintegratedMEMStechnologyindustry;(2)intheintegratedMEMSsystemmorecomplexintegratedcircuitincludingdigitalinterfacesandmicrocontrollers,sothatamorepowerful,cheaperintelligentsystems;(3)thedevelopmentofCMOSchippackagingtechnologyprotectionagainstenvironmentalimpacts,notonlyneedtodevelopasystemtointegratetheMEMSpackage,butalsoneedtoadapttothedevelopmentofthesingle-chippackageintegratedMEMStechnology.4.ConcludingremarksMonolithicIntegratedIntelligentMEMSsensoristhekeytothedevelopmentofICindustryisanimportantdirection.Althoughvariousmethodsaresomeproblemsstillexist,however,withitsconstantresearchandCMOSprocesscompatibilityproblemswillbeallthesolutions.Inthispaper,monolithicintegrationofMEMStechnologytotherequirementswerediscussed,andmonolithicintegrationofvariouscharacteristicsofMEMStechnology,aprocess,atthesametime,alsogivesfuturemonolithicintegrationofMEMStechnologydevelopmenttrendofthefuture.單片集成MEMS技術(shù)在過去的20年中,CMOS技術(shù)已成為集成電路主要制造工藝,制造成本下降的同時(shí),成品率和產(chǎn)量也得到很大提高,COMS工藝將繼續(xù)以增加集成度和減小特制尺寸向前發(fā)展。當(dāng)今,CMOS集成工藝不僅被利用在集成電路設(shè)計(jì)上,而且,也被利用在很多微傳感器和微執(zhí)行器上,這樣可以把微傳感器與集成電路集成在一起,構(gòu)成功能強(qiáng)大的智能傳感器。隨著微傳感應(yīng)用范圍的不斷擴(kuò)大,對(duì)傳感器的要求也越來越高,對(duì)未來微傳感器的主要要求是:微型化和集成化;低功耗和低成本;高精度和長(zhǎng)壽命;多功能和智能化。硅微機(jī)械和集成電路的一體化集成,可以滿足上述要求。目前,集成傳感器的產(chǎn)品多數(shù)采用混合集成,單片集成的比例很小。而實(shí)現(xiàn)單片集成是實(shí)現(xiàn)傳感器智能化的關(guān)鍵,特別是單片集成MEMS傳感器技術(shù)也是當(dāng)今片上系統(tǒng)芯片能否實(shí)現(xiàn)的關(guān)鍵技術(shù)之一。可見,對(duì)各種單片集成MEMS技術(shù)難點(diǎn)進(jìn)行分析以及給出目前已有的各種單片集成MEMS技術(shù)是非常必要的。1.單片集成MEMS技術(shù)的優(yōu)勢(shì)和面臨的挑戰(zhàn)實(shí)現(xiàn)MEMS和CMOS共同工作是分別制造MEMS傳感器和CMOS集成電路,然后,從各自的晶片切開,固定在一個(gè)共同的襯底上,并且,連線鍵合,這樣就實(shí)現(xiàn)兩者的集成,這就是所謂的混合(hybrid)方法。這種方法不會(huì)產(chǎn)生MEMS制造過程對(duì)CMOS電路的污染,同時(shí),兩者生產(chǎn)過程互不干擾。但是,由于信號(hào)經(jīng)過鍵合點(diǎn)和引線,導(dǎo)致在高頻應(yīng)用時(shí),信號(hào)傳輸質(zhì)量下降,并且,開發(fā)兩套生產(chǎn)線增加了產(chǎn)品的成本。為了解決一些性能問題,并降低制造成本,提出把MEMS部分做在和CMOS電路同一塊襯底上,也就是產(chǎn)生了與CMOS工藝兼容單片集成MEMS技術(shù)或叫CMOS-MEMS技術(shù)。這種方法相對(duì)混合方法總的來說有如下優(yōu)勢(shì):第一,性能能得到很大的提高,因?yàn)榧纳娙莺痛當(dāng)_現(xiàn)象可以顯著減小;第二,混合方法需要復(fù)雜的封裝技術(shù)以減小傳感器接口的影響,而單片集成方法需要的封裝技術(shù)相對(duì)簡(jiǎn)單,所以,降低傳感器成本;第三,單片集成傳感器技術(shù)也是陣列傳感器的需要,是克服陣列傳感器與外圍譯碼電路互連瓶頸的一種有效方法;第四,開發(fā)單片集成MEMS產(chǎn)品比開發(fā)混合MEMS產(chǎn)品所需的時(shí)間短,而且,開發(fā)成本低。單片集成MEMS技術(shù)根據(jù)MEMS器件部分與CMOS電路部分加工順序不同可以分為前CMOS(pre-CMOS)、混合CMOS(intermediate-CMOS)及后CMOS(post-CMOS)集成方法。post-CMOS方法是在加工完CMOS電路的硅片上,通過一些附加MEMS微細(xì)加工技術(shù)以實(shí)現(xiàn)單片集成MEMS系統(tǒng),目前,單片集成MEMS技術(shù)主要以這種方法為主。post-CMOS方法主要問題是MEMS加工工藝溫度會(huì)對(duì)前面的CMOS電路性能產(chǎn)生影響,更為嚴(yán)重的是后面高溫MEMS加工工藝溫度與前面CMOS工藝金屬化不兼容。以目前研究最多的多晶硅作為結(jié)構(gòu)層的MEMS為例,使磷硅玻璃致密化退火溫度為950℃,而使作為結(jié)構(gòu)層多晶硅的應(yīng)力退火溫度則達(dá)到1050℃,這將使CMOS器件結(jié)深發(fā)生遷移。特別是800℃時(shí)淺結(jié)器件的結(jié)深遷移就會(huì)影響器件的性能。另一方面,采用常規(guī)鋁金屬化工藝時(shí),當(dāng)溫度達(dá)到400-450℃時(shí),CMOS電路可靠性將受到嚴(yán)重的影響。從以上可以看出:如何克服后面高溫MEMS微結(jié)構(gòu)加工溫度對(duì)前面的已加工完的CMOS電路影響是解決單片集成MEMS系統(tǒng)關(guān)鍵所在。目前,國(guó)際上解決這個(gè)問題基本是通過3種方式:第一種是以難熔金屬化互連代替鋁金屬化互連,如,伯克利大學(xué)的以鎢代替鋁金屬互連方案,這樣提高容忍后續(xù)加工MEMS所需的高溫;第二種方式是通過尋找低制作溫度且機(jī)械性能優(yōu)良的材料代替多晶硅作為結(jié)構(gòu)層材料;第三種方式是利用CMOS本身已有結(jié)構(gòu)層作為MEMS結(jié)構(gòu)層。pre-CMOS集成方法是先制造MEMS結(jié)構(gòu)后制造CMOS電路,這種集成CMOS技術(shù)雖然克服post-CMOS方法中MEMS高溫工藝對(duì)CMOS電路的影響,但由于存在垂直的微結(jié)構(gòu),所以,存在傳感器與電路互連臺(tái)階覆蓋性問題,而且,在CMOS電路工藝過程中對(duì)微結(jié)構(gòu)的保護(hù)也是一個(gè)需要考慮的問題。甚至已優(yōu)化微調(diào)的CMOS工藝流程,例如:柵氧化可能被重?fù)诫s的結(jié)構(gòu)層影響。另外,MEMS工藝過程中不能有任何的金屬或其他的材料,如壓電材料聚合物等,使得這種方法只適合一些特殊應(yīng)用。intermediate-CMOS是在CMOS電路生產(chǎn)過程中插入一些MEMS微細(xì)加工工藝來實(shí)現(xiàn)單片集成MEMS的方法。這種方法已很成熟,并已有很多商品化產(chǎn)品,也是研究最早一種單片集成方法,是解決pre-CMOS和post-CMOS方法存在問題有效方法,但是,由于需要對(duì)現(xiàn)有的標(biāo)準(zhǔn)CMOS或BiCMOS工藝進(jìn)行較大的修改,因此,這種方法的使用有一定限制。2.單片集成MEMS的主要技術(shù)現(xiàn)狀目前,單片集成MEMS技術(shù)主要以post-CMOS技術(shù)為主,通過一系列的與CMOS工藝兼容的表面微細(xì)加工和體加工實(shí)現(xiàn)單片集成MEMS。又可分為2種:一種是在CMOS結(jié)構(gòu)層上面再淀積一層結(jié)構(gòu)層的微加工;另一種是直接以CMOS原有的結(jié)構(gòu)層作為MEMS結(jié)構(gòu)層的微加工。2.1淀積新的結(jié)構(gòu)材料作MEMS結(jié)構(gòu)的集成技術(shù)2.1.1多晶硅作為結(jié)構(gòu)層的集成表面微細(xì)加工技術(shù)這種工藝典型代表是伯克利大學(xué)開發(fā)模塊集成CMOS與MEMS工藝(modularintegrationofCMOSwithmicro-structures,MICS),這種方法是以多晶硅為微結(jié)構(gòu)層,磷硅玻璃(PSG)作為犧牲層的表面微細(xì)加工技術(shù)。采用難熔金屬鎢的金屬化互連代替鋁金屬化互連以承受后面的生產(chǎn)多晶硅微結(jié)構(gòu)所需要的高溫,但是,在600℃時(shí),鎢容易與硅形成反應(yīng),伯克利大學(xué)是通過在接觸孔上放一層TiN阻擋層來解決這一問題的。MICS工藝基本流程是:完成鎢金屬化的CMOS工藝后,淀積300×10-10nm低溫氧化物(LTO),然后,低壓化學(xué)氣相淀積200×10-10nm的氮化硅薄膜保護(hù)已生產(chǎn)的CMOS電路,腐蝕完微結(jié)構(gòu)與CMOS電路的接觸孔后,淀積第1層現(xiàn)場(chǎng)摻雜多晶硅(350×10-10)作為CMOS電路與微結(jié)構(gòu)的互連線,再在上面淀積1um厚的PSG作為犧牲層以及淀積厚度為2um多晶硅結(jié)構(gòu)層。通過在第2層多晶硅上再淀積一層0.5um的PSG,以及在氮?dú)猸h(huán)境下的1000℃快速退火1min來降低作為結(jié)構(gòu)層的多晶硅應(yīng)力。最后,刻蝕多晶硅結(jié)構(gòu)圖形以及腐蝕掉其下面的犧牲層(PSG)以釋放微結(jié)構(gòu)。2.1.2以其他材料作結(jié)構(gòu)層集成表面微細(xì)加工技術(shù)多晶硅鍺不僅有與多晶硅相似的優(yōu)良機(jī)械性能,而且,淀積溫度低與CMOS工藝兼容,所以,目前被廣泛研究。伯克利大學(xué)開發(fā)的基于硅鍺結(jié)構(gòu)層的工藝與MICS工藝基本相似。主要技術(shù)革新:第一,保護(hù)層采用不同的材料,以前MICS工藝采用835℃的LPCVD氮化硅,而現(xiàn)在則是采用兩層LTO和中間夾一層不定型硅(a-Si)作為CMOS電路保護(hù)層,其中,a-Si分兩步淀積,第一步淀積在450℃;第二步淀積則在410℃,這樣溫度是不會(huì)損壞鋁金屬化CMOS電路;第二,采用低淀積溫度多晶硅鍺作為結(jié)構(gòu)層材料,其低壓化學(xué)氣相淀積(LPCVD)溫度只有400℃,采用快速退火溫度也僅為550℃,時(shí)間為30s。而MICS工藝淀積多晶硅結(jié)構(gòu)溫度則超過600℃。從以上兩點(diǎn)可知,由于整個(gè)后續(xù)MEMS加工溫度不超過450℃,所以,不會(huì)對(duì)鋁金屬化互連CMOS電路產(chǎn)生很大的影響。采用鋁作為結(jié)構(gòu)層材料也會(huì)獲得很大成功,最為成功的是德州儀器開發(fā)低溫表面微細(xì)加工技術(shù),并用這種技術(shù)成功生產(chǎn)了數(shù)字微鏡設(shè)備(DMD)。技術(shù)革新主要表現(xiàn)在采用濺射鋁作為結(jié)構(gòu)層材料,并且,采用光致抗蝕劑

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論