




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Windplantpoweroptimizationthroughyawcontrolusingaparametricmodelforwakeeffects—aCFDsimulationstudy
ABSTRACT
Thisarticlepresentsawindplantcontrolstrategythatoptimizestheyawsettingsofwindturbinesforimprovedenergyproductionofthewholewindplantbytakingintoaccountwakeeffects.TheoptimizationcontrollerisbasedonanovelinternalparametricmodelforwakeeffectscalledtheFLOwRedirectionandInductioninSteady-state(FLORIS)model.TheFLORISmodelpredictsthesteady-statewakelocationsandtheeffectiveflowvelocitiesateachturbine,andtheresult-ingturbineelectricalenergyproductionlevels,asafunctionoftheaxialinductionandtheyawangleofthedifferentrotors.TheFLORISmodelhasalimitednumberofparametersthatareestimatedbasedonturbineelectricalpowerproductiondata.Inhigh-fidelitycomputationalfluiddynamicssimulationsofasmallwindplant,wedemonstratethattheoptimizationcontrolbasedontheFLORISmodelincreasestheenergyproductionofthewindplant,withareductionofloadsontheturbinesasanadditionaleffect.Copyright?2014JohnWiley&Sons,Ltd.
KEYWORDS
windplantcontrol;windturbineyawcontrol;windturbinewakes;optimization
Correspondence
J.W.vanWingerden,Mekelweg2,2628CDDelft,TheNetherlands.E-mail:
J.W.vanWingerden@TUDelft.nl
Received21February2014;Revised6October2014;Accepted28October2014
INTRODUCTION
Eachwindturbineinaclusterofwindturbines(awindpowerplant)caninfluencetheperformanceofotherturbinesthroughthewakethatformsdownstreamofitsrotor.Thewakeisaflowstructurethatischaracterizedbyareducedwindspeedbecausetheturbinerotorextractskineticenergyfromtheincomingflowandanincreasedturbulencebecausetheturbineobstructstheflow.Ifanotherturbineisstandinginthepathofawakeatalocationwheretheflowhasnotyetfullyrecoveredtofreestreamconditions,thereducedwindspeedresultsinalowerelectricalenergyproductionofthatturbine.Inaddition,theincreasedturbulenceandshearinthewakemayinduceanincreaseindynamicloadsonthedownstreamturbine.Thesewakeinteractioneffectshavebeenstudiedextensively;seethestudiesofVermeeretal.,Crespoetal.andSanderseforreviewsoftheliterature.1–3Thetopologyandamountofthewakeinteractiondependontime-varyingatmosphericconditions(e.g.,winddirection,windspeed,turbulence,andatmosphericstability)andontheoperatingpointofeachturbinethatcanbeadjustedbychangingtheircontrolsettings(generatortorque,pitchanglesoftheblades,4oryawangle).5–7
Incurrentindustrialpractice,windturbinesinwindplantsarestillcontrolledtomaximizetheirownindividualperfor-mance,ignoringtheeffectthattheturbineshaveonotherturbinesthroughtheirwakes.8Recently,thewakeinteractioneffectshavebecomeamoresignificantfieldofstudyintheresearchonwindturbinecontrolalgorithmsbecausewindplantshavegrowninsize,andmoreknowledgehasbecomeavailableonthelossofefficiencybecauseofthewakeinteractioneffect.ThestudyofBarthelmieetal.,9forexample,reportsanaverageenergyproductionlossof12%inanoffshorewindplantcausedbythewakeeffects(thispercentageisaveragedoverthewinddirections).
Copyright?2014JohnWiley&Sons,Ltd.
Windplantoptimizationbyyawcontrolusingaparametricwakemodel
P.M.O.Gebraadetal.
P.M.O.Gebraadetal.
Windplantoptimizationbyyawcontrolusingaparametricwakemodel
Previousworkonwindplantcontrolhasmainlyfocusedonreducingwakeinteractionbyadjustingtheaxialinductionofturbinestoimprovetheoverallwindplantperformance,whichcanbeachievedbyadjustingpitchandtorque.Thisconceptwasfirstproposedinthelate1980sbySteinbuchetal.10Staticmodel-basedoptimizationstrategies,basedonsimplifiedparametricwakemodels,aretestedbyJohnsonandThomas8andBitarandSeiler11(basedontheJensenwakemodel)12,13andbyGonzalezetal.14(basedontheFrandsenwakemodel).15IntheworkofSchepersandvanderPijl,16asimilarstaticoptimizationisperformedbasedonacomputationalfluiddynamics(CFD)model.Axial-induction-basedwindplantcontrolstrategiesthatadjustthecontrolsettingstochanginginflowconditionsweredevelopedbyMardenetal.andGebraadandvanWingerden(model-freedata-drivenapproaches),17,18Heeretal.(amodel-basedcontrolapproachusingtheJensenmodel),19andSoleimanzadehetal.(model-basedcontrolapproachesusingsimplifiedCFDmodels).20–22Thegoaloftheworkpresentedhereistooptimizetheyawanglesofthewindturbinesforincreasedtotalelectricalpowerproductionofthewindplant.Bychangingtheyawangleofaturbine,theflowdirectionofthewake,aswellastheaxialinductionoftherotor,ischanged.Bycontrollingthedeflectionofthewakethroughyawing,thewakecanbedirectedawayfromdownstreamturbines.ThisapproachwasshowntohavegreatpotentialinCFDsimulationsinthestudiesof
Jiménezetal.andFlemingetal.7,23,24Theconceptwasalsotestedinwindtunnelexperimentswithscaledturbines5andonasmallwindplant.6Thesetestsconfirmedthatthewakecanberedirectedusingyaw,butsinceonlyalimitedamountofdatacouldbegathered,noquantitativeanalysiscouldbemade.AninterestingworkinthiscontextisthatofKragh
andHansen25inwhichitisshownthatmisaligningtherotoryawofaturbinewiththewinddirectioncanalsobeusedtoreducetheloadsonthemisalignedturbine.Theresponseofthecompletewindplantsystemwithrespecttocontrolsettingchangesisslowbecauseoflargedelaysassociatedwiththeflowinthewaketravelingfromoneturbinetothenext.26,27Thisisadisadvantageformodel-freeglobaloptimizationapproachessuchastheoneproposedbyMardenetal.17Thelongtimeitwouldtakeaglobaloptimizationtoiterativelytestcontrolsettingsontherealsystemandconvergeisproblematicifthecontrollerhastoadapttotime-varyingconditionssuchaswinddirectionandinflowvelocity.InthestudyofGebraad
andvanWingerden,18theproblemofhavinglargedelaysinthesystemisaddressed,andanalternativegradient-based‘localized’approachformodel-freeoptimizationisproposedtoimprovethetimeefficiencyofthewindplantcontrol.Thislocalizedoptimizationalgorithmonlytakesintoaccounttheeffectofcontrolsettingchangesonthenearestdownstreamneighboringwindturbines.ThisapproachwasusedbyGebraadandvanWingerdenforpitch-basedandtorque-basedwindplantcontrol,18butitislesssuitedforyawcontrolifthegoalistonotonlydeflectthewakeawayfromthenearestdownstreamturbinebutalsotoavoidthewakehittingturbinesfartherdownstream.Therefore,inthiswork,weproposeamodel-basedcontrolscheme,inwhichanoptimizationalgorithmcantestalargenumberofpossiblecontrolsettingsonthemodel,inordertoiterativelyfindtheoptimalsettingsbasedonthemodelpredictionsbeforeapplyingthemtotherealsystem.
Thesupervisorywindplantcontrolschemeproposedinthispaperincreasesthetotalelectricalenergyproductionofthewindplantbymodel-basedoptimizationoftheyawcontrolsettings.Figure
1
givesanoverviewoftheproposedcon-trolscheme.Animportantpartoftheworkpresentedinthispaperisthedevelopmentofthe‘internalmodel’forthewindplantcontroller.Theinternalmodelpredictsthewakeeffectsinthewindplant.ApreliminaryversionofthisworkappearedinthestudyofGebraadetal.28High-fidelityCFD-basedmodelsthatarebasedonacouplingofdetailedtur-binedynamicsmodelswithaccuratewindflowmodels,suchastheonespresentedbyYangandSotiropoulos,Larsenet
al.,Churchfieldetal.andSchepersandvanderPijl,29–32haveanimportantroleinwindplantcontrolsdevelopment,as
theyallowthealgorithmstobetestedinacontrolledenvironment.Becauseoftheircomputationalcomplexity,accurate
Figure1.Overviewofthedata-drivenmodel-basedwindplantcontroloptimizationapproach(windplantphotocourtesy:Vattenfall,
C.Steiness).
CFD-basedmodelsarelesssuitedforuseasinternalmodelsforreal-timecontrollers.ThesimplifiedparametricJensenandFrandsenmodelsthatwereusedinaxial-induction-basedwindplantcontrolstrategiesmentionedearlier8,11,14,19donotincludetheabilitytopredicttheeffectofyawcontrolonwakeredirection.Therefore,wehavedevelopedanovel
control-orientedmodelthatisabletopredictthesteady-stateeffectsofyawcontrolonthewakesaswellastheresult-ingeffectsontheturbineelectricalpowerproductions.Themodelhasparametersthatcanbeidentifiedbyfittingthepredictionsofthemodeltoturbinepowermeasurements,anapproachreferredtoas‘gray-box’systemidentification.Inaddition,themodelusesmeasurementsfromthewindplanttoestimaterelevantpropertiesoftheinflowintothewindplant.Thecombinationofthemodelidentificationandthemodel-basedoptimizationstepsinthecontrolschemeisillustratedintheoverviewinFigure
1
.Thefactthatweusemeasurementstoidentifythemodelparametersandtheinflowconditionsisthereasonwhywerefertothecontrolschemeas‘data-driven’.Furthermore,themodelhasarelativelysimplestructurethatallowsforquickcomputation,meaningthatitissuitedforreal-timecontrolbasedonmodel-basedoptimizationofthecontrolsettings.
Becausewedonothaveaccesstoareal-worldwindplantonwhichtoperformyawcontrolexperiments,inthiswork,weuseahigh-fidelityCFDwindplantmodeltogeneratethedataneededtodevelopthesimplifiedparametricmodelandidentifythemodelparameters.Next,weimplementthemodelinawindplantcontrolschemethatperformsmodel-basedoptimizationoftheyawsettingsofeachturbineusingagame-theoretic(GT)approach.Finally,wetestthismodel-basedoptimizationcontrolstrategyinthehigh-fidelitywindplantsimulationinwhichtheeffectsonpowerproductionandloadsarecalculated.Inthisway,thehigh-fidelitysimulationisusedtoprovideaproofofconceptforthedata-drivenoptimizationcontrolschemebasedonthesimplifiedparametricmodel.Previousworkonyawoptimizationforwindplants33didnotincludevalidationoftheoptimizedsettingsusinghigh-fidelitynumericalsimulations.
Theremainderofthispaperisorganizedasfollows.InSection
2
,wedescribethesimulationexperimentsperformedinthehigh-fidelityCFDsimulatortoobtainidentificationdatafortheparametricmodel.Thesimplifiedparametricmodel,calledFLOwRedirectionandInductioninSteady-state(FLORIS),ispresentedinSection
3
.InSection
4
,weexplaintheGTapproachtocalculateoptimalyawcontrolsettingsbasedonthesimplifiedmodel.InSection
5
,wepresentsimulationstudiestovalidatethedata-drivenmodel-basedoptimizationapproachinthehigh-fidelityCFDwindplantsimulation.Finally,wediscussourconclusionsinSection
6
.
CHARACTERIZINGWAKEEFFECTSTHROUGHSIMULATIONSINSOWFA,AHIGH-FIDELITYCFDWINDPLANTSIMULATOR
Inthissection,wedescribethesimulationsweperformedinaCFDsimulatortoobtainidentificationdataforthepara-metricmodel.WeusetheSimulatorforOnshore/OffshoreWindFarmApplications(SOWFA),whichisalarge-eddysimulation(LES)ofthethree-dimensionalwindflowaroundoneormoreturbinerotorsintheatmosphericboundarylayer.Therotatingrotorbladesaremodeledthroughanactuatorlineapproach.3TheactuatorlinesarecoupledwiththeFatigue,Aerodynamics,StructuresandTurbulence(FAST)turbineaeroelasticssimulatortool34thatcalculatestheloads,powerandrotorspeedofeachturbine,inadditiontotheforcesthateachturbinebladeexertsontheflow.EachturbineinthesimulationcanbecontrolledusinganindividualcontrolalgorithmimplementedinFASTandalsothroughasuper-visoryordistributedplant-widecontroller.MoredetailsontheCFDcalculationsinSOWFAcanbefoundinthestudyofChurchfieldetal.,31andFlemingetal.35,36givemoreexplanationoncontrolsimplementationinSOWFA.Inaddition,Churchfieldetal.37presentavalidationofSOWFAwithtime-averagedturbinepowersmeasuredattheLillgrundwindplantin?resund,Sweden.
SOWFAsimulationresultswerepresentedbyFlemingetal.23,24thatshowthefollowing:
●
Theeffectivenessoftheyawtechniquesinredirectingthewake.
●
Theeffectofyawwakeredirectiontechniquesontheelectricalenergyproductionandloadsofdownstreamturbinesthatarestandinginthewakeoftheyawingturbine.
●
Theeffectonelectricalenergyproductionandloadsonaturbineofrepositioningthatturbinesuchthattheoverlapwithawakeofanupstreamturbineisreduced.
D
1
Moreinparticular,Flemingetal.24presenttheresultsofSOWFAsimulationsofasetupoftwoNationalRenewableEnergyLaboratory(NREL)5-megawatt(MW)baselineturbines.38TheseturbineshavearotordiameterD126.4m.Inthissetup,theturbinesarealignedinthewinddirectionwithadownwindspacingof7rotordiameters.7D/.Theturbinesareplacedinadomainthatis3km(horizontallength)by3km(horizontalwidth)by1km(height).Theturbulentinflowintothedomainhasameanhub-heightfree-streamwindspeedUof8ms—1andaturbulenceintensityof6%.Thisturbulentinflowisgeneratedbyaprecursorsimulationoftheneutralboundarylayerinthesamedomain,withanaerodynamicsurfaceroughnessthathasalowvalueof0.001m,whichistypicalforoffshoreconditions.
Figure2.SetupandresultsfortheSOWFASimulationSeries1and2asdescribedinSection
2
.Thepowerdatawereusedtofindtheparametersoftheparametricmodel(Section
3
).(a)Experimentalsetups.(b)Time-averagedpowerdata.
Inthispaper,weusedthedatafromthefollowingtwoseriesofsimulationsperformedbyFlemingetal.24(Figure
2
(a)):
InSOWFASimulationSeries1,theupstreamturbine(turbine1)isyawedtoredirectitswakeawayfromthedownwind
turbine(turbine2),resultinginanelectricalpowerproductiondecreaseonturbine1causedbyalossofrotorefficiencyandanelectricalpowerproductionincreaseonturbine2causedbyanincreaseofthevelocityoftheinflowintoturbine2.
●
InSOWFASimulationSeries2,turbine2ismovedinthecrosswinddirectiontoreducetheoverlapofitsrotorwiththewakeofturbine1,alsocausinganincreaseintheelectricalpowerproductionofturbine2.
Foreachyawsettingandposition,a600-ssimulationwasrun.Thewakeswereallowedtodevelopduringthefirst200softhesimulationandthen400sofsimulateddatawerecollected.Byaveragingthepowersignalsoftheturbinesoverthese400s,theresultspresentedinFigure
2
(b)weregenerated.Ineachcase,theturbinesusethebaselinepitchandtorquecontrollersdefinedbyJonkmanetal.38Forthesimulatedflowconditions,boththeupstreamandthedownstreamturbineoperateinabelow-ratedoperatingregion(region2)andthususeconstantpitch,variabletorquecontroltomaximizepowerproduction.38,39Formostcases,thedownwindturbineproduceslesselectricalenergythantheupwindonebecauseitissubjectedtothelow-speedwakeoftheupwindturbine.Figure
2
(b)alsoincludesthepredictionsofthesimplifiedparametricmodel(FLORIS)thatispresentedinSection
3
.
SOWFAhigh-fidelityCFDsimulationsaretypicallyrunforafewdaysonaclusterwithafewhundredprocessors.23,24
BecauseofthecomplexityandcomputationalcostsoftheSOWFAmodel,itisnotsuitableasaninternalmodelforawindplantcontroller.ThedatageneratedbySOWFA,however,canbeusedtodevelopsimplifiedmodelsthatcanbedirectlyusedbythecontroller.InSection
3
,wedescribehowthepowerdatafromSOWFASimulationSeries1and2areusedtodevelopandidentifyparametersofsuchasimplifiedcontrol-orientedmodel(FLORIS).InSection
5
,weuseSOWFAtoevaluatethecontroltechniquesbasedonthesimplifiedinternalmodelinhigh-fidelitysimulations.
FLORIS,ADATA-DRIVENPARAMETRICWINDPLANTMODEL
Inthissection,weexplainthestructureofaparametricmodelpredictingthesteady-stateeffectsofyawmisalignmentofdifferentturbinesontheelectricalenergyproductionsofwindturbinesinawindplant.Itcapturestheeffectsoftheyawcontrolonboththeredirectionofthewakebehindtheturbineandonthevelocityinthewake.Thisisimportantforpredictingtheelectricalenergyproductionsondownstreamturbines,asisalsopointedoutbyChoiandShan.27Sinceitincludesbotheffects,fortheremainderofthepaper,werefertothemodelastheFLORISmodel.
TheFLORISmodelisacombinationoftheJensenmodel12,13andamodelforwakedeflectionthroughyawfirst
presentedbyJiménezetal.7Further,augmentationsweremadetotheJensenmodelinordertobettermodelsituationswithpartialwakeoverlapandtothewakedeflectionmodelinordertoincludewakepositionoffsetscausedbyrotorrotationaleffects.TheseaugmentationsalsoallowbetterfitsofthemodelwiththepowermeasurementsobtainedinSOWFASimulationSeries1and2.
Figure
3
givesanoverviewofthedifferentpartsofthemodelandofhowitinteractswiththeyawoptimizationalgorithmofthewindplantcontroller.Italsoshowsthatmeasuredpowerandyawsettingofturbines,aswellaswinddirectionmea-surementsateachturbine,arefedintothemodel.Themeasurementsareusedtoestimatecertainatmosphericconditions,beingthecurrentdirectionandfree-streamvelocityoftheinflowintothewindplant.Theseyawmeasurementsshouldbedistinguishedfromtheprelimarytestyawsettingsthattheoptimizationalgorithmfeedsintothemodel,andthecorre-spondingpredictedturbinepoweroutputsthatthemodelgeneratesonthebasisofthosetestyawsettingsandtheestimatedinflowproperties,andfeedsbacktotheoptimizationalgorithm.
Inthissection,wepresentthedifferentpartsoftheFLORISmodel.First,inSection
3.1,
weexplainhowtheelectricalpowerproductionlevelsoftheturbinesarecalculated(theturbinepowermodelinFigure
3
).Tocalculatethesepowerlevels,estimatesoftheeffectiveinflowspeedsareused.Theseinflowspeedestimatesfollowfromthewakemodel.Inthewakemodel,weuseaspecificdownwind/crosswindcoordinateframe.Figure
3
showsthattheturbinecoordinatesaretransformedtothesecoordinatesusingmeasuredwinddirectionsattheturbines.ThisstepisfurtherexplainedinSection
3.2.
Submodelsfordifferentwakepropertiesarethewakedecay,deflectionandexpansionmodels,whicharealsoshowninFigure
3
.ThesesubmodelsareexplainedinSections
3.3–3.5.
Finally,Figure
3
showsthewakecombinationsubmodel,whichdefineshowthewakeeffectsofthedifferentturbinesarecombinedtofindtheeffectiveinflowspeeds
?Σ ?j2Σ
Figure3.OverviewoftheFLORISdata-drivenparametricmodelasitisimplementedinthewindplantcontroller.Figure
1
showsthesamebasiccontrolscheme,butinthisfigure,thedifferentsubmodelsoftheFLORISsimplifiedwindplantmodelareshown,andtheidentificationblockisomitted.TheFLORISmodelusessomemeasurementsfromthewindplant(shownbelowthemodelscheme)toestimateintheinflowproperties(speedanddirection).TheGToptimizationalgorithm(topright)usestheFLORISmodeltotestyawsettingsfortheseparticularinflowconditionsandfinallysendsoptimizedyawsettingsasreferencesignalstothewindplant.Intheschemeshownhere,theshorthandnotation8iisusedfortheset8iiF,where8iisacertainpropertyofaturbineiinthe
windplant.
ateachturbine.WeexplainthissubmodelinSection
3.6.
Inexplainingthemodel,weintroducedifferentcoefficientsthatserveasmodelparametersthataretobetunedtomeasurementsfromawindplant.Inthiswork,weusethepowermeasurementsfromSOWFAtofindtheFLORISmodelparameters,asdiscussedinSection
3.7.
Turbinepower
2F
FDf ··· g
Let 1,2,,Ndenoteasetofindicesthatnumberthewindturbinesinawindplant,withNdenotingthetotalnumberofturbinesintheplant.Thesteady-stateelectricalpowerofaturbinei,denotedasPi,iscalculatedasfollows:40
2
i
PiD1pAiCP.ai,μi/U38i2F (1)
D—
wherepistheairdensity,Aiistherotorsweptarea,CPisthepowercoefficientoftheturbine,andUiistheeffectivewindspeedattheturbine.Innonyawedidealizedconditions,thepowercoefficientisrelatedtotheaxialinductionfactorofeachturbine,definedasai1Ui,D=Ui,withUi,Dbeingthewindspeedattherotor,andUithefree-streamwindspeedinfront
D —
ofturbinei,asCP.ai/4ai?1ai]2.40Inthemodelpresentedhere,weapplyacorrectiononthisrelationshiptoaccount
fortheeffectoftheyawmisalignmentangleμiontherotorpowercoefficient,followingtheexampleoftheexperimentalstudiesbyMedici.41Inaddition,weuseaconstantscalingoftheCPvalue,щ,toaccountforotherlosses.Thisresultsin
CP.ai,μi/D4ai?1—ai]2щcos.μi/pP (2)
D
D
D
D
TomatchthemaximumCP0.482and94.4%generatorefficiencyreportedbyJonkmanetal.38fortheNREL5-MWturbinethatisusedinSOWFASimulationSeries1and2,weusealossfactorщ0.768.InthestudyofMedici,41aparametervaluepP2wasfoundtofitdatafromwindtunneltestswithyawingturbines,buttheparametersettingslistedinTable
I
arefoundtofittheyaw-powerrelationshipoftheupstreamturbine(turbine1)inSOWFASimulationSeries1(Figure
2
(b)).Tofindtheseparameters,weassumeanidealizedaxialinductionofai1=3forbelow-ratedconditions.Themodelcanbeextendedtoabove-ratedoperationbymakecorrectionsonaiasafunctionofinflowspeedUi(basedonamaximumratedpower),orbymakingaiafunctionofpitchandtip-speedratio,usingknowlegdeoftheCP-curve.
Intheremainderofthissection,wedescribehowtheeffectiveinflowspeedsUiateachturbineareestimatedbythemodelbypredictingthesteady-statewakecharacteristicsasafunctionoftheyawangles.
Inflowdirectionandthedownwind–crosswindcoordinateframe
82F
Todescribethespatialpropertiesofthewakesbehindtheturbines,weadoptaCartesiancoordinateframework.x,y/inwhichthex-axisispointingdownwindalonganestimatedmeaninflowdirectioninthewindplant,andthey-axisispointingorthogonaltothex-axisinthehorizontaldirection(i.e.,alongthecrosswinddirection,asillustratedinFigure
4
).Thez-axisthenrepresentsthealtitude.Inthiswork,weassumethateachturbinehasthesamehub-height,andtheturbinelocationsinthisdownwind–crosswindcoordinateframearedenotedas.Xi,Yi/i.
Themeaninflowdirection,denotedby?,canbeestimatedinseveralways.Inthemodel,asusedintheCFDsimulation
examplesinSection
5
,itisfoundusingwinddirectionmeasurementsatthemostupwindturbine.Todeterminewhichisthefrontturbine,weneedsomeinitialguessofthefree-streamwinddirection,soweusetheiterativeproceduredescribedinthenumberedlistthatfollows.Thestepsofthisprocedurearealsoillustratedintheleft-mostblockintheFLORISmodelschemeinFigure
3
.Thestepsareasfollows:
i
2F
Weaveragetheflowdirectionmeasurementsatthehubofeachturbinei,denotedas?measured,toprovideafirstestimateoftheinflowdirection.IntheCFDsimulationexamples,thewinddirectionattheturbinehubsisestimatedbysamplingthehorizontalvelocitycomponents.uNi,vNi/atthehublocationofeachturbinei2Ffromtheflowfield
TableI.Parametricmodelparameters.
Turbine
power
Deflection
Expansion
Velocity
y
0.768
kd 0.15
ke 0.065
MU,1 0.5
pP
1.88
ad —4.5
me,1 —0.5
MU,2 1
MU,3 5.5
me,3 1
aU 5
bU 1.66
Wake
bd —0.01 me,2 0.22
Figure4.Thethreedifferentwakezonesoftheparametricmodel.Thefree-streamwindvectorsareindicatedasarrowswithlength
Ui(thefree-streamvelocity).Insidethewakezones,thewindvectorshaveareducedvelocity(Section
3.5).
Theareasoverlapping
i,j,q
withadownstreamrotorj,Aolareusedtocalculatetheeffectivewindspeedatturbinej(equations
(20)
and(
22)).
(a)Topview.(b)Cut-throughatdownstreamturbine.
calculatedbytheCFDsimulatorandbycalculatingthedirectioninthehorizontalplaneas?iDtan—1.vNi=uNi/:
X
1N
i
?DN
iD1
?measured (3)
? Σ NN
Theturbinepositionsindownwind/crosswindcoordinatesarecalculatedaccordingtotheestimatedwinddirection.IfXNi,YNiaretheturbinecoordinatesrelativetothesameCartesiancoordinates.x,y/towhichthewinddirection?ismeasured(Figure
4
),thedownwind–crosswindturbinecoordinatesare
ΣXiΣDΣcos.—?/—sin.—?/ΣΣXNiΣ (4)
Yi sin.—?/cos.—?/
YNi
Itisestablishedwhichturbineisthefront(mostupwind)turbine,anditisassumedthatthemeaninflowdirectionisequaltothewinddirectionmeasuredatthatturbine(i.e.,weassumeauniformdirectionofthefree-streaminflowtothewindplant):
D
f argminXi (5)
i2F
f
?D?measured
Werepeatsteps2and3untilconvergence(i.e.,nochangeinestimatedwinddirection?).
(6)
Thewinddirectionestimationiterativeprocedurewillgenerallyconvergetoawinddirectionmeasuredatacertainturbinewithintwoorthreeiterationsinoursimulationexamples.NotethatinourimplementationofthemodelasillustratedinFigure
3
,thewinddirectionmeasurementsatthehuboftheturbines,definedrelativetothemeshcoordinates,arelow-passfilteredtofilteroutsmall-scaleturbulenceeffects.
Wakedeflection
. Σ
i
40
Yawingaturbinerotorcausesthethrustforcethattherotorexertsontheflow,FD,torotateinsuchawaythatacrosswindcomponentisinduced,7whichcausesthewindflowtodeflectinthedirectionoppositetotheyawrotation(Figure
4
(a)).Becausethewakedeflectionisinducedbythethrustforce,theamountofdeflectionisafunctionofthethrustcoefficientoftheturbineCTD2FD=pAiU2.Whentheyawisnotmisalignedwithrespecttothewinddirection(i.e.,μiD0),the
thrustcoefficientisrelatedtotheaxialinductionfactoraioftherotorofaturbine
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高考語(yǔ)文備考之文學(xué)常識(shí)總結(jié)(必修+選修)
- 2025年簡(jiǎn)測(cè) 優(yōu)勢(shì)測(cè)試題及答案
- 2025年濟(jì)陽(yáng)中考物理試題及答案
- 2025年醫(yī)美整形測(cè)試題及答案
- 2025年湖南職中英語(yǔ)試題及答案
- 2025年滄縣事業(yè)編面試題及答案
- 2025年算法面試題高頻題及答案
- 2025年土木工程結(jié)構(gòu)試題及答案
- 2025年深圳中考探究性試題及答案
- 2025年關(guān)于網(wǎng)癮測(cè)試題及答案
- 技術(shù)研發(fā)主管崗位招聘筆試題及解答(某大型國(guó)企)
- 2024年全國(guó)職業(yè)院校技能大賽高職組(中藥傳統(tǒng)技能賽項(xiàng))考試題庫(kù)(含答案)
- 浙江省金華市2024年初中畢業(yè)升學(xué)適應(yīng)性檢測(cè) 科學(xué)試題卷
- 2024年六年級(jí)語(yǔ)文下冊(cè)全冊(cè)單元教材分析
- 2024年江西省中考生物·地理合卷試卷真題(含答案逐題解析)
- 延長(zhǎng)石油招聘筆試試題
- 2020-2021年度廣東省職業(yè)院校學(xué)生專(zhuān)業(yè)技能大賽(高職組)CAD機(jī)械設(shè)計(jì)賽項(xiàng)競(jìng)賽規(guī)程
- DB-T 29-22-2024 天津市住宅設(shè)計(jì)標(biāo)準(zhǔn)
- 2024年贛州職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)及答案解析
- DL∕T 5209-2020 高清版 混凝土壩安全監(jiān)測(cè)資料整編規(guī)程
- 孫子生日宴會(huì)爺爺致辭范文
評(píng)論
0/150
提交評(píng)論