版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Chapter13
MultipleRegressionMultipleRegressionModelLeastSquaresMethodMultipleCoefficientofDeterminationModelAssumptionsTestingforSignificanceUsingtheEstimatedRegressionEquation forEstimationandPredictionCategoricalIndependentVariables Theequationthatdescribeshowthedependentvariableyisrelatedtotheindependentvariablesx1,x2,...xpandanerrortermis:MultipleRegressionModely=b0+b1x1+b2x2+
...+bpxp+ewhere: b0,b1,b2,...,bparetheparameters,and eisarandomvariablecalledtheerrortermMultipleRegressionModel Theequationthatdescribeshowthemeanvalueofyisrelatedtox1,x2,...xpis:MultipleRegressionEquationE(y)=
0+
1x1+
2x2+...+
pxpMultipleRegressionEquation Asimplerandomsampleisusedtocomputesamplestatisticsb0,b1,b2,...,bpthatareusedasthepointestimatorsoftheparametersb0,b1,b2,...,bp.EstimatedMultipleRegressionEquation^y=b0+b1x1+b2x2+...+bpxpEstimatedMultipleRegressionEquationEstimationProcessMultipleRegressionModelE(y)=
0+
1x1+
2x2+...+
pxp+eMultipleRegressionEquationE(y)=
0+
1x1+
2x2+...+
pxp
Unknownparametersareb0,b1,b2,...,bpSampleData:x1x2...xpy........
EstimatedMultipleRegressionEquation
Samplestatisticsareb0,b1,b2,...,bpb0,b1,b2,...,bpprovideestimatesofb0,b1,b2,...,bpLeastSquaresMethodLeastSquaresCriterionComputationofCoefficientValuesTheformulasfortheregressioncoefficientsb0,b1,b2,...bpinvolvetheuseofmatrixalgebra.Wewillrelyoncomputersoftwarepackagestoperformthecalculations. Theyearsofexperience,scoreontheaptitudetesttest,andcorrespondingannualsalary($1000s)forasampleof20programmersisshownonthenextslide.Example:ProgrammerSalarySurveyMultipleRegressionModelAsoftwarefirmcollecteddataforasampleof20computerprogrammers.Asuggestionwasmadethatregressionanalysiscouldbeusedtodetermineifsalarywasrelatedtotheyearsofexperienceandthescoreonthefirm’sprogrammeraptitudetest.47158100166921056846337810086828684758083918873758174877994708924.043.023.734.335.838.022.223.130.033.038.026.636.231.629.034.030.133.928.230.0Exper.(Yrs.)TestScoreTestScoreExper.(Yrs.)Salary($000s)Salary($000s)MultipleRegressionModel Supposewebelievethatsalary(y)isrelatedtotheyearsofexperience(x1)andthescoreontheprogrammeraptitudetest(x2)bythefollowingregressionmodel: MultipleRegressionModelwhere
y=annualsalary($000) x1=yearsofexperience
x2=scoreonprogrammeraptitudetesty=
0+
1x1+
2x2+
SolvingfortheEstimatesof
0,
1,
2
InputDataLeastSquaresOutputx1
x2
y47824710043......38930ComputerPackageforSolvingMultipleRegressionProblemsb0=b1=b2=R2=etc.Excel’sRegressionEquationOutputNote:ColumnsF-Iarenotshown.SolvingfortheEstimatesof
0,
1,
2EstimatedRegressionEquationSALARY=3.174+1.404(EXPER)+0.251(SCORE)Note:Predictedsalarywillbeinthousandsofdollars.InterpretingtheCoefficients Inmultipleregressionanalysis,weinterpreteachregressioncoefficientasfollows:birepresentsanestimateofthechangeinycorrespondingtoa1-unitincreaseinxiwhenallotherindependentvariablesareheldconstant. Salaryisexpectedtoincreaseby$1,404for eachadditionalyearofexperience(whenthevariable
scoreonprogrammerattitudetestisheldconstant).b1=1.404InterpretingtheCoefficients Salaryisexpectedtoincreaseby$251foreach additionalpointscoredontheprogrammeraptitude test(whenthevariableyearsofexperienceisheld constant).b2=0.251InterpretingtheCoefficientsMultipleCoefficientofDeterminationRelationshipAmongSST,SSR,SSEwhere:
SST=totalsumofsquares
SSR=sumofsquaresduetoregression
SSE=sumofsquaresduetoerrorSST=SSR+SSE=+Excel’sANOVAOutputMultipleCoefficientofDeterminationSSRSSTMultipleCoefficientofDeterminationR2=500.3285/599.7855=.83418R2=SSR/SSTAdjustedMultipleCoefficientofDeterminationThevarianceof
,denotedby
2,isthesameforallvaluesoftheindependentvariables.Theerror
isanormallydistributedrandomvariablereflectingthedeviationbetweentheyvalueandtheexpectedvalueofygivenby
0+
1x1+
2x2+..+
pxp.AssumptionsAbouttheErrorTerm
Theerror
isarandomvariablewithmeanofzero.Thevaluesof
areindependent.Insimplelinearregression,theFandttestsprovidethesameconclusion.TestingforSignificanceInmultipleregression,theFandttestshavedifferentpurposes.TestingforSignificance:FTestTheFtestisreferredtoasthetestforoverall
significance.TheFtestisusedtodeterminewhetherasignificantrelationshipexistsbetweenthedependentvariableandthesetofalltheindependentvariables.Aseparatettestisconductedforeachoftheindependentvariablesinthemodel.IftheFtestshowsanoverallsignificance,thettestisusedtodeterminewhethereachoftheindividualindependentvariablesissignificant.TestingforSignificance:tTestWerefertoeachofthesettestsasatestforindividual
significance.TestingforSignificance:FTestHypothesesRejectionRuleTestStatisticsH0:
1=
2=...=
p=0Ha:Oneormoreoftheparametersisnotequaltozero.F=MSR/MSERejectH0ifp-value<
aorifF>F
,whereF
isbasedonanFdistributionwithpd.f.inthenumeratorandn-p-1d.f.inthedenominator.FTestforOverallSignificanceHypothesesH0:
1=
2=0Ha:Oneorbothoftheparametersisnotequaltozero.RejectionRuleFor
=.05andd.f.=2,17;F.05=3.59RejectH0ifp-value<.05orF
>3.59Excel’sANOVAOutputFTestforOverallSignificancep-valueusedtotestforoverallsignificanceFTestforOverallSignificanceTestStatisticsF=MSR/MSE=250.16/5.85=42.76Conclusionp-value<.05,sowecanrejectH0.(Also,F=42.76>3.59)TestingforSignificance:tTestHypothesesRejectionRuleTestStatisticsRejectH0ifp-value<
aorift
<-t
ort
>
t
wheret
isbasedonatdistributionwithn-p-1degreesoffreedom.tTestforSignificanceofIndividualParametersHypothesesRejectionRuleFor
=.05andd.f.=17,t.025=2.11RejectH0ifp-value<.05,orift
<-2.11ort
>2.11Excel’sRegressionEquationOutputNote:ColumnsF-Iarenotshown.tTestforSignificanceofIndividualParameterststatisticandp-valueusedtotestfortheindividualsignificanceof“Experience”Excel’sRegressionEquationOutputNote:ColumnsF-Iarenotshown.tTestforSignificanceofIndividualParameterststatisticandp-valueusedtotestfortheindividualsignificanceof“TestScore”tTestforSignificanceofIndividualParametersTestStatisticsConclusionsRejectboth
H0:
1=0andH0:
2=0.Bothindependentvariablesaresignificant.TestingforSignificance:MulticollinearityThetermmulticollinearityreferstothecorrelationamongtheindependentvariables.Whentheindependentvariablesarehighlycorrelated(say,|r|>.7),itisnotpossibletodeterminetheseparateeffectofanyparticularindependentvariableonthedependentvariable.TestingforSignificance:MulticollinearityEveryattemptshouldbemadetoavoidincludingindependentvariablesthatarehighlycorrelated.Iftheestimatedregressionequationistobeusedonlyforpredictivepurposes,multicollinearityisusuallynotaseriousproblem.UsingtheEstimatedRegressionEquation
forEstimationandPredictionTheproceduresforestimatingthemeanvalueofyandpredictinganindividualvalueofyinmultipleregressionaresimilartothoseinsimpleregression.Wesubstitutethegivenvaluesofx1,x2,...,xpintotheestimatedregressionequationandusethecorrespondingvalueofyasthepointestimate.UsingtheEstimatedRegressionEquation
forEstimationandPredictionSoftwarepackagesformultipleregressionwilloftenprovidetheseintervalestimates.Theformulasrequiredtodevelopintervalestimatesforthemeanvalueofy
andforanindividualvalueofyarebeyondthescopeofthetextbook.^Inmanysituationswemustworkwithcategorical
independentvariables
suchasgender(male,female),methodofpayment(cash,check,creditcard),etc.Forexample,x2mightrepresentgenderwherex2=0indicatesmaleandx2=1indicatesfemale.CategoricalIndependentVariablesInthiscase,x2iscalledadummyorindicatorvariable. Theyearsofexperience,thescoreontheprogrammeraptitudetest,whethertheindividualhasarelevantgraduatedegree,andtheannualsalary($000)foreachofthesampled20programmersareshownonthenextslide.CategoricalIndependentVariablesExample:ProgrammerSalarySurvey Asanextensionoftheprobleminvolvingthecomputerprogrammersalarysurvey,supposethatmanagementalsobelievesthattheannualsalaryisrelatedtowhethertheindividualhasagraduatedegreeincomputerscienceorinformationsystems.47158100166921056846337810086828684758083918873758174877994708924.043.023.734.335.838.022.223.130.033.038.026.636.231.629.034.030.133.928.230.0Exper.(Yrs.)TestScoreTestScoreExper.(Yrs.)Salary($000s)Salary($000s)Degr.NoYesNoYesYesYesNoNoNoYesDegr.YesNoYesNoNoYesNoYesNoNoCategoricalIndependentVariablesEstimatedRegressionEquation^where:
y=annualsalary($1000)
x1=yearsofexperience
x2=scoreonprogrammerapt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鹽城師范學(xué)院《數(shù)字媒體設(shè)計》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024贊助商銷售合同范文
- 蘇教版四年級下冊數(shù)學(xué)第三單元 三位數(shù)乘兩位數(shù) 測試卷【學(xué)生專用】
- 北師大版四年級上冊數(shù)學(xué)第三單元 乘法 測試卷帶答案(b卷)
- 2024年腈綸扁平絲項目發(fā)展計劃
- 2024采購合同審查要點
- 年產(chǎn)2GW綠能光伏用高分子新材料組件項目 (1)環(huán)評報告表
- 電氣成套控制設(shè)備制造及銷售項目環(huán)評報告表
- 中國食品薄膜行業(yè)發(fā)展環(huán)境、供需態(tài)勢及投資前景分析報告(智研咨詢發(fā)布)
- 2024版土地轉(zhuǎn)讓協(xié)議合同
- 中華民族共同體概論學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 腦出血課件完整版本
- 世界慢阻肺日
- 2024年資格考試-CPSM認(rèn)證考試近5年真題附答案
- 混料機的安全操作規(guī)程有哪些(8篇)
- 期中 (試題) -2024-2025學(xué)年譯林版(三起)英語六年級上冊
- 2024秋期國家開放大學(xué)《財務(wù)報表分析》一平臺在線形考(作業(yè)一至五)試題及答案
- 國家基本醫(yī)療保險、工傷保險和生育保險藥品目錄(2023年)
- 《深度學(xué)習(xí)入門-基于Python的實現(xiàn)》 課件全套 吳喜之 1-9 從最簡單的神經(jīng)網(wǎng)絡(luò)說起- -TensorFlow 案例
- 年產(chǎn)80萬件針織服飾技改項目可行性研究報告寫作模板-申批備案
- 城市公益公墓區(qū)建設(shè)方案
評論
0/150
提交評論