版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
南充市重點中學2024屆數(shù)學九年級第一學期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,以點O為位似中心,將△ABC放大后得到△DEF,已知△ABC與△DEF的面積比為1:9,則OC:CF的值為()A.1:2 B.1:3 C.1:8 D.1:92.下列各點中,在反比例函數(shù)圖象上的點是A. B. C. D.3.下列說法中,正確的是()A.如果k=0,是非零向量,那么k=0 B.如果是單位向量,那么=1C.如果||=||,那么=或=﹣ D.已知非零向量,如果向量=﹣5,那么∥4.如圖,一人站在兩等高的路燈之間走動,為人在路燈照射下的影子,為人在路燈照射下的影子.當人從點走向點時兩段影子之和的變化趨勢是()A.先變長后變短 B.先變短后變長C.不變 D.先變短后變長再變短5.某果園2017年水果產(chǎn)量為100噸,2019年水果產(chǎn)量為144噸,則該果園水果產(chǎn)量的年平均增長率為()A.10% B.20% C.25% D.40%6.如圖,AB為圓O直徑,C、D是圓上兩點,ADC=110°,則OCB度()A.40 B.50 C.60 D.707.如圖,一個半徑為r(r<1)的圓形紙片在邊長為6的正六邊形內任意運動,則在該六邊形內,這個圓形紙片不能接觸到的部分的面積是()A.πr2 B.C. D.8.如圖,點在線段上,在的同側作等腰和等腰,與、分別交于點、.對于下列結論:①;②;③.其中正確的是()A.①②③ B.① C.①② D.②③9.如圖,點A、B、C是⊙O上的三點,∠BAC=40°,則∠OBC的度數(shù)是()A.80° B.40° C.50° D.20°10.用一個平面去截一個圓錐,截面的形狀不可能是()A.圓 B.矩形 C.橢圓 D.三角形二、填空題(每小題3分,共24分)11.若關于x的一元二次方程x2+mx+m2﹣19=0的一個根是﹣3,則m的值是_____.12.若一元二次方程x2-2x+m=0有兩個不相同的實數(shù)根,則實數(shù)m的取值范圍是___.13.兩個相似三角形的面積比為,其中較大的三角形的周長為,則較小的三角形的周長為__________.14.如圖,小明同學用自制的直角三角形紙板DEF測量樹AB的高度,他調整自己的位置,使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=10m,則AB=_____m.15.如圖,分別以等邊三角形的每個頂點為圓心、以邊長為半徑,在另兩個頂點間作一段圓弧,三段圓弧圍成的曲邊三角形稱為勒洛三角形.若等邊三角形的邊長為a,則勒洛三角形的周長為_____.16.如果關于的方程有兩個相等的實數(shù)根,那么的值為________,此時方程的根為_______.17.如圖,在坐標系中放置一菱形,已知,,先將菱形沿軸的正方向無滑動翻轉,每次翻轉,連續(xù)翻轉2019次,點的落點依次為,,,…,則的坐標為__________.18.若關于x的方程有兩個不相等的實數(shù)根,則a的取值范圍是________.三、解答題(共66分)19.(10分)為了從小華和小亮兩人中選拔一人參加射擊比賽,現(xiàn)對他們的射擊水平進行測試,兩人在相同條件下各射擊6次,命中的環(huán)數(shù)如下(單位:環(huán)):小華:7,8,7,8,9,9;小亮:5,8,7,8,1,1.(1)填寫下表:平均數(shù)(環(huán))中位數(shù)(環(huán))方差(環(huán)2)小華8小亮83(2)根據(jù)以上信息,你認為教練會選擇誰參加比賽,理由是什么?(3)若小亮再射擊2次,分別命中7環(huán)和9環(huán),則小亮這8次射擊成績的方差.(填“變大”、“變小”、“不變”)20.(6分)例:利用函數(shù)圖象求方程x2﹣2x﹣2=0的實數(shù)根(結果保留小數(shù)點后一位).解:畫出函數(shù)y=x2﹣2x﹣2的圖象,它與x軸的公共點的橫坐標大約是﹣0.1,2.1.所以方程x2﹣2x﹣2=0的實數(shù)根為x1≈﹣0.1,x2≈2.1.我們還可以通過不斷縮小根所在的范圍估計一元二次方程的根.……這種求根的近似值的方法也適用于更高次的一元方程.根據(jù)你對上面教材內容的閱讀與理解,解決下列問題:(1)利用函數(shù)圖象確定不等式x2﹣4x+3<0的解集是;利用函數(shù)圖象確定方程x2﹣4x+3=的解是.(2)為討論關于x的方程|x2﹣4x+3|=m解的情況,我們可利用函數(shù)y=|x2﹣4x+3|的圖象進行研究.①請在網(wǎng)格內畫出函數(shù)y=|x2﹣4x+3|的圖象;②若關于x的方程|x2﹣4x+3|=m有四個不相等的實數(shù)解,則m的取值范圍為;③若關于x的方程|x2﹣4x+3|=m有四個不相等的實數(shù)解x1,x2,x3,x4(x1<x2<x3<x4),滿足x4﹣x3=x3﹣x2=x2﹣x1,求m的值.21.(6分)用適當?shù)姆椒ń庀铝幸辉畏匠蹋?);(2).22.(8分)如圖,點D在以AB為直徑的⊙O上,AD平分,,過點B作⊙O的切線交AD的延長線于點E.(1)求證:直線CD是⊙O的切線.(2)求證:.23.(8分)如圖,為美化中心城區(qū)環(huán)境,政府計劃在長為30米,寬為20米的矩形場地上修建公園.其中要留出寬度相等的三條小路,且兩條與平行,另一條與平行,其余部分建成花圃.(1)若花圃總面積為448平方米,求小路寬為多少米?(2)已知某園林公司修建小路的造價(元)和修建花圃的造價(元)與修建面積(平方米)之間的函數(shù)關系分別為和.若要求小路寬度不少于2米且不超過4米,求小路寬為多少米時修建小路和花圃的總造價最低?24.(8分)如圖,點E,F(xiàn),G,H分別位于邊長為a的正方形ABCD的四條邊上,四邊形EFGH也是正方形,AG=x,正方形EFGH的面積為y.(1)當a=2,y=3時,求x的值;(2)當x為何值時,y的值最???最小值是多少?25.(10分)2019年12月17日,我國第一艘國產(chǎn)航母“山東艦”在海南三亞交付海軍.如圖,“山東艦”在一次試水測試中,航行至處,觀測指揮塔位于南偏西方向,在沿正南方向以30海里/小時的速度勻速航行2小時后,到達處,再觀測指揮塔位于南偏西方向,若繼續(xù)向南航行.求“山東艦”與指揮塔之間的最近距離為多少海里?(結果保留根號)26.(10分)如圖,已知⊙O的半徑為5cm,弦AB的長為8cm,P是AB延長線上一點,BP=2cm,求cosP的值.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】利用位似的性質和相似三角形的性質得到,然后利用比例性質求出即可.【題目詳解】解:∵△ABC與△DEF位似,∴=,∴,∴,故選A.【題目點撥】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.注意:①兩個圖形必須是相似形;②對應點的連線都經(jīng)過同一點;③對應邊平行.2、B【分析】把各點的坐標代入解析式,若成立,就在函數(shù)圖象上.即滿足xy=2.【題目詳解】只有選項B:-1×(-2)=2,所以,其他選項都不符合條件.故選B【題目點撥】本題考核知識點:反比例函數(shù)的意義.解題關鍵點:理解反比例函數(shù)的意義.3、D【分析】根據(jù)平面向量的性質一一判斷即可.【題目詳解】解:A、如果k=0,是非零向量,那么k=0,錯誤,應該是k=.B、如果是單位向量,那么=1,錯誤.應該是=1.C、如果||=||,那么=或=﹣,錯誤.模相等的向量,不一定平行.D、已知非零向量,如果向量=﹣5,那么∥,正確.故選:D.【題目點撥】本題主要考查平面向量,平行向量等知識,解題的關鍵是熟練掌握平面向量的基本知識.4、C【分析】連接DF,由題意易得四邊形CDFE為矩形.由DF∥GH,可得.又AB∥CD,得出,設=a,DF=b(a,b為常數(shù)),可得出,從而可以得出,結合可將DH用含a,b的式子表示出來,最后得出結果.【題目詳解】解:連接DF,已知CD=EF,CD⊥EG,EF⊥EG,∴四邊形CDFE為矩形.∴DF∥GH,∴又AB∥CD,∴.設=a,DF=b,∴,∴∴∴GH=,∵a,b的長是定值不變,∴當人從點走向點時兩段影子之和不變.故選:C.【題目點撥】本題考查了相似三角形的應用:利用桿或直尺測量物體的高度就是利用桿或直尺的高(長)作為三角形的邊,利用視點和盲區(qū)的知識構建相似三角形,用相似三角形對應邊的比相等的性質求物體的高度.5、B【分析】2019年水果產(chǎn)量=2017年水果產(chǎn)量,列出方程即可.【題目詳解】解:根據(jù)題意得,解得(舍去)故答案為20%,選B.【題目點撥】本題考查了一元二次方程的應用.6、D【分析】根據(jù)角的度數(shù)推出弧的度數(shù),再利用外角∠AOC的性質即可解題.【題目詳解】解:∵ADC=110°,即優(yōu)弧的度數(shù)是220°,∴劣弧的度數(shù)是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=∠AOC=70°,故選D.【題目點撥】本題考查圓周角定理、外角的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.7、C【分析】當圓運動到正六邊形的角上時,圓與兩邊的切點分別為E,F,連接OE,OB,OF,根據(jù)六邊形的性質得出,所以,再由銳角三角函數(shù)的定義求出BF的長,最后利用可得出答案.【題目詳解】如圖,當圓運動到正六邊形的角上時,圓與兩邊的切點分別為E,F,連接OE,OB,OF,∵多邊形是正六邊形,∴,,∴圓形紙片不能接觸到的部分的面積是故選:C.【題目點撥】本題主要考查正六邊形和圓,掌握正六邊形的性質和特殊角的三角函數(shù)值是解題的關鍵.8、A【解題分析】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三邊份數(shù)關系可證;(2)通過等積式倒推可知,證明△PAM∽△EMD即可;(3)2CB2轉化為AC2,證明△ACP∽△MCA,問題可證.詳解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正確∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP?MD=MA?ME所以②正確∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四點共圓∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP?CM∵AC=AB∴2CB2=CP?CM所以③正確故選A.點睛:本題考查了相似三角形的性質和判斷.在等積式和比例式的證明中應注意應用倒推的方法尋找相似三角形進行證明,進而得到答案.9、C【解題分析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故選C.10、B【分析】利用圓錐的形狀特點解答即可.【題目詳解】解:平行于圓錐的底面的截面是圓,故A可能;截面不可能是矩形,故B符合題意;斜截且與底面不相交的截面是橢圓,故C可能;過圓錐的頂點的截面是三角形,故D可能.故答案為B.【題目點撥】本題主要考查了截一個幾何體所得的截面的形狀,解答本題的關鍵在于明確截面的形狀既與被截的幾何體有關,還與截面的角度和方向有關.二、填空題(每小題3分,共24分)11、-2或1.【解題分析】將x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案為-2或1.點睛:已知方程的一個實數(shù)根,要求方程中的未知參數(shù),把根代入方程即可.12、【分析】根據(jù)方程的系數(shù)結合根的判別式△>0,即可得出關于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍.【題目詳解】解:∵方程x2?2x+m=0有兩個不相同的實數(shù)根,∴△=(?2)2?4m>0,解得:m<1.故答案為:m<1.【題目點撥】本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數(shù)根”是解題的關鍵.13、1【分析】根據(jù)面積之比得出相似比,然后利用周長之比等于相似比即可得出答案.【題目詳解】∵兩個相似三角形的面積比為∴兩個相似三角形的相似比為∴兩個相似三角形的周長也比為∵較大的三角形的周長為∴較小的三角形的周長為故答案為:1.【題目點撥】本題主要考查相似三角形的性質,掌握相似三角形的性質是解題的關鍵.14、6.5【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上AC的長即可求得樹AB的高.【題目詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DE=40cm=0.4m,EF=20cm=0.2m,CD=10m,∴,解得:BC=5(m),∵AC=1.5m,∴AB=AC+BC=1.5+5=6.5(m),故答案為:6.5【題目點撥】本題考查相似三角形的應用,如果兩個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;熟練掌握相似三角形的判定定理是解題關鍵.15、πa【分析】首先根據(jù)等邊三角形的性質得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧長公式求出的長=的長=的長=,那么勒洛三角形的周長為【題目詳解】解:如圖.∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的長=的長=的長=,∴勒洛三角形的周長為故答案為πa.【題目點撥】本題考查了弧長公式:(弧長為l,圓心角度數(shù)為n,圓的半徑為R),也考查了等邊三角形的性質.16、1【分析】根據(jù)題意,討論當k=0時,符合題意,當時,一元二次方程有兩個相等的實數(shù)根即,據(jù)此代入系數(shù),結合完全平方公式解題即可.【題目詳解】當k=0,方程為一元一次方程,沒有兩個實數(shù)根,故關于的方程有兩個相等的實數(shù)根,即即故答案為:1;.【題目點撥】本題考查一元二次方程根與系數(shù)的關系、完全平方公式等知識,是重要考點,難度較易,掌握相關知識是解題關鍵.17、(2326,0)【分析】根據(jù)題意連接AC,根據(jù)條件可以求出AC,畫出第5次、第6次、第7次翻轉后的圖形,容易發(fā)現(xiàn)規(guī)律:每翻轉6次,圖形向右平移2.由于2029=336×6+3,因此點向右平移2322(即336×2)即可到達點,根據(jù)點的坐標就可求出點的坐標.【題目詳解】解:連接AC,如圖所示:∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=2,∴AC=2.畫出第5次、第6次、第7次翻轉后的圖形,如上圖所示.由圖可知:每翻轉6次,圖形向右平移2.∵2029=336×6+3,∴點向右平移2322(即336×2)到點.∵的坐標為(2,0),∴的坐標為(2+2322,0),∴的坐標為(2326,0).故答案為:(2326,0).【題目點撥】本題考查菱形的性質、等邊三角形的判定與性質等知識,考查操作、探究、發(fā)現(xiàn)規(guī)律的能力,發(fā)現(xiàn)“每翻轉6次,圖形向右平移2”是解決本題的關鍵.18、且【分析】根據(jù)根的判別式?>0,且二次項系數(shù)a-2≠0列式求解即可.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.【題目詳解】由題意得,解得且,故答案為:且.【題目點撥】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.解答時要注意二次項的系數(shù)不能等于零.三、解答題(共66分)19、(1)8,8,;(2)選擇小華參賽.(3)變小【分析】(1)根據(jù)方差、平均數(shù)和中位數(shù)的定義求解;
(2)根據(jù)方差的意義求解;
(3)根據(jù)方差公式求解.【題目詳解】(1)解:小華射擊命中的平均數(shù):=8,小華射擊命中的方差:,小亮射擊命中的中位數(shù):;(2)解:∵小華=小亮,S2小華<S2小亮∴選小華參賽更好,因為兩人的平均成績相同,但小華的方差較小,說明小華的成績更穩(wěn)定,所以選擇小華參賽.(3)解:小亮再射擊2次,分別命中7環(huán)和9環(huán),則小亮這8次射擊成績的方差變小.【題目點撥】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了算術平均數(shù)和眾數(shù).20、(2)2<x<3,x=4;(2)①見解析,②0<m<2,③m=0.8【分析】畫出圖象,根據(jù)題意通過觀察可求解.【題目詳解】解:(2)x2﹣4x+3=0與x軸的交點為(2,0),(3,0),③m=0.8∴x2﹣4x+3<0的解集是2<x<3,畫出函數(shù)y=x2﹣4x+3和函數(shù)y=的圖象,可知x2﹣4x+3=的解為x=4,故答案為2<x<3,x=4;(2)①如圖:②如圖:通過觀察圖象可知:|x2﹣4x+3|=m有四個不相等的實數(shù)解,0<m<2;故答案為0<m<2;③由x4﹣x3=x3﹣x2=x2﹣x2,可得x2、x3是x2x4的三等分點,由圖可知,m=0.8時,滿足x4﹣x3=x3﹣x2=x2﹣x2.【題目點撥】本題考查了利用圖像解不等式,等式.根據(jù)函數(shù)解析式畫圖,數(shù)形結合思想是解題的關鍵21、(1),;(2),.【分析】(1)把原方程化成一元二次方程的一般形式,利用公式法解方程即可;(2)按照平方差公式展開、合并,再利用十字相乘法解方程即可.【題目詳解】(1)整理得:,∵,∴,∴,∴,.(2)整理得:,∴,∴x+4=0或x-2=0,解得:,.【題目點撥】本題考查解一元二次方程,一元二次方程的常用解法有:直接開平方法、配方法、公式法、因式分解法等,熟練掌握并靈活運用適當?shù)姆椒ㄊ墙忸}關鍵.22、(1)證明見解析;(2)證明見解析.【解題分析】(1)連接OD,由角平分線的定義得到∠CAD=∠BAD,根據(jù)等腰三角形的性質得到∠BAD=∠ADO,求得∠CAD=∠ADO,根據(jù)平行線的性質得到CD⊥OD,于是得到結論;
(2)連接BD,根據(jù)切線的性質得到∠ABE=∠BDE=90°,根據(jù)相似三角形的性質即可得到結論.【題目詳解】解:證明:(1)連接OD,∵AD平分,∴,∵,∴,∴,∴,∵,∴,∴直線CD是⊙O的切線;(2)連接BD,∵BE是⊙O的切線,AB為⊙O的直徑,∴,∵,∴,∵,∴,∴,∴.【題目點撥】本題考查了相似三角形的判定和性質,角平分線的定義.圓周角定理,切線的判定和性質,正確的作出輔助線是解題的關鍵.23、(1)小路的寬為2米;(2)小路的寬為2米時修建小路和花圃的總造價最低.【分析】(1)設小路的寬為米,根據(jù)面積公式列出方程并解方程即可;(2)設小路的寬為米,總造價為元,先分別表示出花圃的面積和小路的面積,然后根據(jù)已知函數(shù)關系,即可求出總造價為與小路寬的函數(shù)關系式,化為頂點式,利用二次函數(shù)的增減性求最值即可求出此時的小路的寬.【題目詳解】解:(1)設小路的寬為米,則可列方程解得:或(舍去)答:小路的寬為2米.(2)設小路的寬為米,總造價為元,則花圃的面積為平方米,小路面積為=平方米所以整理得:∵,對稱軸為x=20∴當時,隨的增大而增大∴當時,取最小值答:小路的寬為2米時修建小路和花圃的總造價最低【題目點撥】此題考查的是一元二次方程的應用和二次函數(shù)的應用,掌握實際問題中的等量關系和利用二次函數(shù)增減性求最值是解決出的關鍵.24、(1)x=;(1)當x=a(即E在AB邊上的中點)時,正方形EFGH的面積最小,最小的面積為a1.【分析】(1)設正方形ABCD的邊長為a,AE=x,則BE=a﹣x,易證△AHE≌△BEF≌△CFG≌△DHG,再利用勾股定理求出EF的長,進而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甘肅省涇川縣第三中學2025屆高三物理第一學期期末質量檢測模擬試題含解析
- 廣東省2025屆高三物理第一學期期中學業(yè)質量監(jiān)測模擬試題含解析
- 2025屆云南省玉溪市元江縣一中物理高三第一學期期末質量檢測試題含解析
- 2025屆遼寧省盤錦市物理高三第一學期期末檢測模擬試題含解析
- 湖南省桃江縣2025屆物理高三第一學期期末質量跟蹤監(jiān)視模擬試題含解析
- 安徽省廬江盛橋中學2025屆物理高一第一學期期末經(jīng)典模擬試題含解析
- 中學生標準學術能力診斷2025屆高三物理第一學期期末綜合測試試題含解析
- 外墻花崗巖干掛承包合同
- 2024代理貿易合同(標準版)
- 2024年永久投資合同范本
- 人教部編版七年級歷史上冊第19課 北魏政治和北方民族大交融課件(23張PPT)
- 機械設備定期檢查維修保養(yǎng)使用臺賬
- 麗聲北極星分級繪本第四級上 Stop!Everyone Stop!教學設計
- 小學科學教育科學三年級上冊天氣《認識氣溫計》教學設計
- 希爾頓酒店市場營銷環(huán)境的swot分析 2
- 消化道穿孔課件
- 液化氣站氣質分析報告管理制度
- 可編輯修改中國地圖模板
- 水務集團有限公司檔案管理制度資料
- 為先祖立碑祭文五篇
- DBJ50T-232-2016 建設工程監(jiān)理工作規(guī)程
評論
0/150
提交評論