版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第1講等差(等比)數(shù)列目錄第一部分:知識強(qiáng)化第二部分:重難點題型突破突破一:判斷(證明)等差(等比)數(shù)列突破二:等差(等比)中項突破三:等差(等比)數(shù)列下標(biāo)和性質(zhì)突破四:等差(等比)數(shù)列的單調(diào)性突破五:等差(等比)數(shù)列奇偶項和突破六:等差(等比)數(shù)列片段和性質(zhì)突破七:兩個等差數(shù)列前SKIPIF1<0項和比的問題
第三部分:沖刺重難點特訓(xùn)第一部分:知識強(qiáng)化1、等差中項由三個數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0組成的等差數(shù)列可以看成是最簡單的等差數(shù)列.這時,SKIPIF1<0叫做SKIPIF1<0與SKIPIF1<0的等差中項.這三個數(shù)滿足關(guān)系式SKIPIF1<0.2、等差數(shù)列的單調(diào)性①當(dāng)SKIPIF1<0,等差數(shù)列SKIPIF1<0為遞增數(shù)列②當(dāng)SKIPIF1<0,等差數(shù)列SKIPIF1<0為遞減數(shù)列③當(dāng)SKIPIF1<0,等差數(shù)列SKIPIF1<0為常數(shù)列3、等差數(shù)列的四種判斷方法(1)定義法SKIPIF1<0(或者SKIPIF1<0)(SKIPIF1<0是常數(shù))SKIPIF1<0是等差數(shù)列.(2)等差中項法:SKIPIF1<0(SKIPIF1<0)SKIPIF1<0是等差數(shù)列.(3)通項公式:SKIPIF1<0(SKIPIF1<0為常數(shù))SKIPIF1<0是等差數(shù)列.(SKIPIF1<0可以看做關(guān)于SKIPIF1<0的一次函數(shù))(4)前SKIPIF1<0項和公式:SKIPIF1<0(SKIPIF1<0為常數(shù))SKIPIF1<0是等差數(shù)列.(SKIPIF1<0可以看做關(guān)于SKIPIF1<0的二次函數(shù),但是不含常數(shù)項SKIPIF1<0)提醒;證明一個數(shù)列是等差數(shù)列,只能用定義法或等差中項法4、等差數(shù)列前SKIPIF1<0項和性質(zhì)(1)若數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,則數(shù)列SKIPIF1<0也是等差數(shù)列,且公差為SKIPIF1<0(2)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,SKIPIF1<0為其前SKIPIF1<0項和,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…組成公差為SKIPIF1<0的等差數(shù)列(3)在等差數(shù)列SKIPIF1<0,SKIPIF1<0中,它們的前SKIPIF1<0項和分別記為SKIPIF1<0則SKIPIF1<0(4)若等差數(shù)列SKIPIF1<0的項數(shù)為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0。(5)若等差數(shù)列SKIPIF1<0的項數(shù)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<05、等比中項如果SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,那么SKIPIF1<0叫做SKIPIF1<0與SKIPIF1<0的等比中項.即:SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等比中項?SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列?SKIPIF1<0.6、等比數(shù)列的單調(diào)性已知等比數(shù)列SKIPIF1<0的首項為SKIPIF1<0,公比為SKIPIF1<01、當(dāng)SKIPIF1<0或SKIPIF1<0時,等比數(shù)列SKIPIF1<0為遞增數(shù)列;2、當(dāng)SKIPIF1<0或SKIPIF1<0時,等比數(shù)列SKIPIF1<0為遞減數(shù)列;3、當(dāng)SKIPIF1<0時,等比數(shù)列SKIPIF1<0為常數(shù)列(SKIPIF1<0)4、當(dāng)SKIPIF1<0時,等比數(shù)列SKIPIF1<0為擺動數(shù)列.7、等比數(shù)列的判斷(證明)1、定義:SKIPIF1<0(或者SKIPIF1<0)(可判斷,可證明)2、等比中項法:驗證SKIPIF1<0(特別注意SKIPIF1<0)(可判斷,可證明)3、通項公式法:驗證通項是關(guān)于SKIPIF1<0的指數(shù)型函數(shù)(只可判斷)8、等比數(shù)列前SKIPIF1<0項和的性質(zhì)公比為SKIPIF1<0的等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,關(guān)于SKIPIF1<0的性質(zhì)??嫉挠幸韵滤念?(1)數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…組成公比為SKIPIF1<0(SKIPIF1<0)的等比數(shù)列(2)當(dāng)SKIPIF1<0是偶數(shù)時,SKIPIF1<0當(dāng)SKIPIF1<0是奇數(shù)時,SKIPIF1<0(3)SKIPIF1<0第二部分:重難點題型突破突破一:判斷(證明)等差(等比)數(shù)列1.(2022·廣東·深圳實驗學(xué)校光明部高三期中)“數(shù)列SKIPIF1<0為等差數(shù)列”是“數(shù)列SKIPIF1<0為等比數(shù)列”的(
)A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件【答案】B【詳解】取SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0為等差數(shù)列,但SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不為等比數(shù)列,故數(shù)列SKIPIF1<0不是等比數(shù)列,故“數(shù)列SKIPIF1<0為等差數(shù)列”推不出“數(shù)列SKIPIF1<0為等比數(shù)列”,若數(shù)列SKIPIF1<0為等比數(shù)列,故SKIPIF1<0,其中SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,故數(shù)列SKIPIF1<0為等差數(shù)列,故“數(shù)列SKIPIF1<0為等比數(shù)列”可推出“數(shù)列SKIPIF1<0為等差數(shù)列”,故“數(shù)列SKIPIF1<0為等差數(shù)列”是“數(shù)列SKIPIF1<0為等比數(shù)列”的必要不充分條件,故選:B.2.(2022·山東省莒南第一中學(xué)高三期中)“數(shù)列SKIPIF1<0為等比數(shù)列”是“數(shù)列SKIPIF1<0為等差數(shù)列”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【詳解】數(shù)列SKIPIF1<0為等比數(shù)列,設(shè)其公比為SKIPIF1<0,則SKIPIF1<0也為等比數(shù)列,且SKIPIF1<0,所以SKIPIF1<0,所以,SKIPIF1<0為等差數(shù)列,反之,若數(shù)列SKIPIF1<0為等差數(shù)列,例如SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0,滿足數(shù)列SKIPIF1<0為等差數(shù)列,但推不出“數(shù)列SKIPIF1<0為等比數(shù)列”(SKIPIF1<0正負(fù)隨取構(gòu)不成等比數(shù)列).所以,“數(shù)列SKIPIF1<0是等比數(shù)列”是“數(shù)列SKIPIF1<0為等差數(shù)列”的充分不必要條件.故選:A.3.(2022·陜西·榆林市第十中學(xué)高一期末)已知等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則(
)A.?dāng)?shù)列SKIPIF1<0是等差等列 B.?dāng)?shù)列SKIPIF1<0是等差數(shù)列C.?dāng)?shù)列SKIPIF1<0是遞減數(shù)列 D.?dāng)?shù)列SKIPIF1<0是遞增數(shù)列【答案】B【詳解】解:因為等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0故數(shù)列SKIPIF1<0是以1為首項,以2為公比的等比等列,故A錯誤;則SKIPIF1<0,SKIPIF1<0故數(shù)列SKIPIF1<0是以0為首項,以-1為公差的等差數(shù)列,故B正確;由A知:SKIPIF1<0。故數(shù)列SKIPIF1<0是遞增數(shù)列,故C錯誤;由B知:SKIPIF1<0,故數(shù)列SKIPIF1<0是遞減數(shù)列,故D錯誤;故選:B4.(2022·北京·人大附中高三開學(xué)考試)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,則“SKIPIF1<0,SKIPIF1<0,SKIPIF1<0”是“SKIPIF1<0為等比數(shù)列”的(
)A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件【答案】A【詳解】解:“SKIPIF1<0,SKIPIF1<0,SKIPIF1<0”,取SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0為等比數(shù)列.反之不成立,SKIPIF1<0為等比數(shù)列,設(shè)公比為SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,只有SKIPIF1<0時才能成立滿足SKIPIF1<0.SKIPIF1<0數(shù)列SKIPIF1<0滿足SKIPIF1<0,則“SKIPIF1<0,SKIPIF1<0,SKIPIF1<0”是“SKIPIF1<0為等比數(shù)列”的充分不必要條件.故選:A.5.(2022·全國·高三專題練習(xí))數(shù)列SKIPIF1<0中,“SKIPIF1<0,SKIPIF1<0”是“SKIPIF1<0是公比為2的等比數(shù)列”的(
)A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】B【詳解】解:若SKIPIF1<0是公比為2的等比數(shù)列,則一定有SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0不一定為等比數(shù)列,例如當(dāng)SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0,但此時該數(shù)列不是等比數(shù)列.所以“SKIPIF1<0,SKIPIF1<0”是“SKIPIF1<0是公比為2的等比數(shù)列”的必要而不充分條件.故選:B6.(2022·江西省萬載中學(xué)高一階段練習(xí)(文))若數(shù)列{an}的前n項和Sn=an-1(a∈R,且a≠0),則此數(shù)列是(
)A.等差數(shù)列B.等比數(shù)列C.等差數(shù)列或等比數(shù)列D.既不是等差數(shù)列,也不是等比數(shù)列【答案】C【詳解】當(dāng)n=1時,a1=S1=a-1;當(dāng)n≥2時,an=Sn-Sn-1=(an-1)-(an-1-1)=an-an-1=an-1(a-1).當(dāng)a-1=0,即a=1時,該數(shù)列為等差數(shù)列,當(dāng)a≠1時,該數(shù)列為等比數(shù)列.故選:C突破二:等差(等比)中項1.(2022·廣西河池·模擬預(yù)測(文))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因為SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號.故選:A2.(2022·湖北黃岡·高三階段練習(xí))已知正項等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0是SKIPIF1<0和SKIPIF1<0的等差中項,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】正項等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,解得SKIPIF1<0,又因為SKIPIF1<0是SKIPIF1<0和SKIPIF1<0的等差中項,所以SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.故選:A.3.(2022·山西·高三期中)已知數(shù)列SKIPIF1<0是等差數(shù)列,且SKIPIF1<0.若SKIPIF1<0是SKIPIF1<0和SKIPIF1<0的等差中項,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】解:因為數(shù)列SKIPIF1<0是等差數(shù)列,所以SKIPIF1<0是正項等比數(shù)列,又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或-1(舍),又因為SKIPIF1<0是SKIPIF1<0和SKIPIF1<0的等差中項,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時取等號.故選:A.4.(2022·全國·模擬預(yù)測)已知正實數(shù)b是實數(shù)a和實數(shù)c的等差中項,且SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,則SKIPIF1<0______.【答案】SKIPIF1<0【詳解】設(shè)a,b,c的公差為d,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,化簡得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,因此SKIPIF1<0.故答案為:SKIPIF1<05.(2022·山西臨汾·高三階段練習(xí))已知SKIPIF1<0,若SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等比中項,則SKIPIF1<0的最小值為__________.【答案】SKIPIF1<0【詳解】解:由題意得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立.故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<06.(2022·天津河?xùn)|·高二期末)設(shè)各項均為正數(shù)的等差數(shù)列SKIPIF1<0的前n(SKIPIF1<0)項和為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等比中項,則數(shù)列SKIPIF1<0的公差d為______.【答案】1【詳解】設(shè)各項均為正數(shù)的等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,因為SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等比中項,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍).經(jīng)檢驗滿足題意.故答案為:1.突破三:等差(等比)數(shù)列下標(biāo)和性質(zhì)1.(2022·全國·高三專題練習(xí))已知等差數(shù)列SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0_____.【答案】SKIPIF1<0【詳解】因為數(shù)列SKIPIF1<0是等差數(shù)列,故SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0解得SKIPIF1<0.故答案為:SKIPIF1<0.2.(2022·河南·宜陽縣第一高級中學(xué)高二階段練習(xí)(理))已知數(shù)列SKIPIF1<0為等差數(shù)列,其前SKIPIF1<0項和為SKIPIF1<0,則SKIPIF1<0___________.【答案】55【詳解】由題意知數(shù)列SKIPIF1<0為等差數(shù)列,設(shè)公差為d,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故答案為:553.(2022·陜西·長安一中高一階段練習(xí))設(shè)SKIPIF1<0為公比SKIPIF1<0的等比數(shù)列,若SKIPIF1<0和SKIPIF1<0是方程SKIPIF1<0的兩根,則SKIPIF1<0___________.【答案】13122【詳解】由SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0SKIPIF1<0和SKIPIF1<0是方程SKIPIF1<0的兩根,所以SKIPIF1<0所以公比SKIPIF1<0則SKIPIF1<0故答案為:131224.(2022·福建省福州第八中學(xué)高三階段練習(xí))在正項等比數(shù)列SKIPIF1<0中,若SKIPIF1<0,則SKIPIF1<0______.【答案】2【詳解】SKIPIF1<0.故答案為:25.(2022·安徽省臨泉第一中學(xué)高二期末)已知數(shù)列SKIPIF1<0是等差數(shù)列,數(shù)列SKIPIF1<0是等比數(shù)列,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0##SKIPIF1<0【詳解】等差數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,等比數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<06.(2022·全國·高二課時練習(xí))等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩根,則SKIPIF1<0的值為___________.【答案】SKIPIF1<0【詳解】由題設(shè)知:SKIPIF1<0,又SKIPIF1<0為等比數(shù)列,∴SKIPIF1<0,且SKIPIF1<0,而SKIPIF1<0,∴SKIPIF1<0,故SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<07.(2022·全國·高三專題練習(xí)(文))已知數(shù)列SKIPIF1<0是等比數(shù)列,數(shù)列SKIPIF1<0是等差數(shù)列,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【詳解】在等比數(shù)列SKIPIF1<0中,SKIPIF1<0,由等比數(shù)列的性質(zhì),可得SKIPIF1<0.在等差數(shù)列SKIPIF1<0中,SKIPIF1<0,由等差數(shù)列的性質(zhì),可得SKIPIF1<0.SKIPIF1<0.故答案為:SKIPIF1<0突破四:等差(等比)數(shù)列的單調(diào)性1.(2022·陜西·渭南市瑞泉中學(xué)高二階段練習(xí))在等差數(shù)列SKIPIF1<0中,SKIPIF1<0記SKIPIF1<0,則數(shù)列SKIPIF1<0(
)A.有最大項,有最小項 B.有最大項,無最小項C.無最大項,有最小項 D.無最大項,無最小項【答案】C【詳解】解:依題意可得公差SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又當(dāng)SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,所以當(dāng)SKIPIF1<0時,數(shù)列SKIPIF1<0單調(diào)遞增,所以數(shù)列SKIPIF1<0無最大項,數(shù)列SKIPIF1<0有最小項SKIPIF1<0.故選:C2.(2022·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0是首項為SKIPIF1<0,公差為1的等差數(shù)列,數(shù)列SKIPIF1<0滿足SKIPIF1<0若對任意的SKIPIF1<0,都有SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由已知SKIPIF1<0,SKIPIF1<0對任意的SKIPIF1<0,都有SKIPIF1<0成立,即SKIPIF1<0,即SKIPIF1<0,又?jǐn)?shù)列SKIPIF1<0是首項為SKIPIF1<0,公差為1的等差數(shù)列,SKIPIF1<0,且SKIPIF1<0是單調(diào)遞增數(shù)列,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:B.3.(2022·全國·高三專題練習(xí))設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,其前SKIPIF1<0項的積為SKIPIF1<0,并且滿足條件SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則使SKIPIF1<0成立的最大自然數(shù)SKIPIF1<0的值為(
)A.9 B.10C.18 D.19【答案】C【詳解】由SKIPIF1<0,可得SKIPIF1<0一個大于SKIPIF1<0,另一個小于SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0大于SKIPIF1<0.又SKIPIF1<0其中一個大于SKIPIF1<0,則SKIPIF1<0都大于SKIPIF1<0,故SKIPIF1<0.若SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0均大于SKIPIF1<0,與題意矛盾.故SKIPIF1<0,由SKIPIF1<0,可得:SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0,又SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時SKIPIF1<0單調(diào)遞減.故當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,于是此時SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,而SKIPIF1<0.SKIPIF1<0.故當(dāng)SKIPIF1<0時都有SKIPIF1<0,而SKIPIF1<0是滿足SKIPIF1<0成立的最大自然數(shù)SKIPIF1<0.故選:SKIPIF1<04.(2022·安徽·高三開學(xué)考試)設(shè)正項等比數(shù)列SKIPIF1<0的前SKIPIF1<0項乘積為SKIPIF1<0,已知SKIPIF1<0,則SKIPIF1<0的(
)A.最大值為32 B.最大值為1024C.最小值為SKIPIF1<0 D.最小值為SKIPIF1<0【答案】A【詳解】設(shè)等比數(shù)列的公比為SKIPIF1<0,因為SKIPIF1<0,即SKIPIF1<0,化簡可得SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,且等比數(shù)列各項為正,所以SKIPIF1<0即等比數(shù)列是遞減數(shù)列,且SKIPIF1<0所以SKIPIF1<0有最大值,最大值是前4項積或者前5項積,則SKIPIF1<0所以SKIPIF1<0的最大值為32.故選:A.突破五:等差(等比)數(shù)列奇偶項和1.(2022·全國·高三專題練習(xí))已知等差數(shù)列SKIPIF1<0共有SKIPIF1<0項,其中奇數(shù)項之和為290,偶數(shù)項之和為261,則SKIPIF1<0的值為(
).A.30 B.29 C.28 D.27【答案】B【詳解】奇數(shù)項共有SKIPIF1<0項,其和為SKIPIF1<0,∴SKIPIF1<0.偶數(shù)項共有n項,其和為SKIPIF1<0,∴SKIPIF1<0.故選:B.2.(2022·全國·高三專題練習(xí))已知等差數(shù)列SKIPIF1<0共有SKIPIF1<0項,若數(shù)列SKIPIF1<0中奇數(shù)項的和為SKIPIF1<0,偶數(shù)項的和為SKIPIF1<0,SKIPIF1<0,則公差SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題意SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0.故選:A.3.(2022·全國·高三專題練習(xí))已知等差數(shù)列SKIPIF1<0的公差為4,項數(shù)為偶數(shù),所有奇數(shù)項的和為15,所有偶數(shù)項的和為55,則這個數(shù)列的項數(shù)為A.10 B.20 C.30 D.40【答案】B【詳解】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,項數(shù)為SKIPIF1<0,前SKIPIF1<0項和為SKIPIF1<0,則SKIPIF1<0,即這個數(shù)列的項數(shù)為20,故選擇B.4.(2020·全國·高二課時練習(xí))一個項數(shù)為偶數(shù)的等比數(shù)列,它的偶數(shù)項和是奇數(shù)項和的2倍,又它的首項為1,且中間兩項的和為24,則此等比數(shù)列的項數(shù)為(
)A.6 B.8 C.10 D.12【答案】B【詳解】設(shè)等比數(shù)列項數(shù)為2n項,所有奇數(shù)項之和為SKIPIF1<0,所有偶數(shù)項之和為SKIPIF1<0,則SKIPIF1<0,又它的首項為1,所以通項為SKIPIF1<0,中間兩項的和為SKIPIF1<0,解得SKIPIF1<0,所以項數(shù)為8,故選B.5.(2022·全國·高三專題練習(xí))已知一個等比數(shù)列首項為SKIPIF1<0,項數(shù)是偶數(shù),其奇數(shù)項之和為SKIPIF1<0,偶數(shù)項之和為SKIPIF1<0,則這個數(shù)列的項數(shù)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】設(shè)這個等比數(shù)列SKIPIF1<0共有SKIPIF1<0項,公比為SKIPIF1<0,則奇數(shù)項之和為SKIPIF1<0,偶數(shù)項之和為SKIPIF1<0,SKIPIF1<0,等比數(shù)列SKIPIF1<0的所有項之和為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,因此,這個等比數(shù)列的項數(shù)為SKIPIF1<0.故選:C.6.(2022·全國·高二課時練習(xí))等比數(shù)列SKIPIF1<0共有SKIPIF1<0項,其中SKIPIF1<0,偶數(shù)項和為84,奇數(shù)項和為170,則SKIPIF1<0(
)A.3 B.4 C.7 D.9【答案】A【詳解】因為等比數(shù)列SKIPIF1<0共有SKIPIF1<0項,所以等比數(shù)列中偶數(shù)項有SKIPIF1<0項,奇數(shù)項有SKIPIF1<0項,由題意得SKIPIF1<0,所以偶數(shù)項和為SKIPIF1<0,奇數(shù)項和為SKIPIF1<0,相減得SKIPIF1<0SKIPIF1<0故選:A突破六:等差(等比)數(shù)列片段和性質(zhì)1.(2022·全國·高三專題練習(xí))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.13 C.-13 D.-18【答案】D【詳解】由SKIPIF1<0,可設(shè)SKIPIF1<0∵SKIPIF1<0為等差數(shù)列,∴S3,S6SKIPIF1<0S3,S9SKIPIF1<0S6為等差數(shù)列,即a,SKIPIF1<06a,SKIPIF1<0成等差數(shù)列,∴SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0故選:D.2.(2022·全國·高二課時練習(xí))等差數(shù)列SKIPIF1<0中其前n項和為SKIPIF1<0,SKIPIF1<0則SKIPIF1<0為.A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由等差數(shù)列前SKIPIF1<0項和性質(zhì)可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列又SKIPIF1<0,SKIPIF1<0
SKIPIF1<0SKIPIF1<0本題正確選項:SKIPIF1<03.(2022·全國·高二課時練習(xí))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,則有SKIPIF1<0成等差數(shù)列,即SKIPIF1<0,而SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:B4.(2022·寧夏·吳忠中學(xué)高二期中(理))設(shè)等差數(shù)列的前n項和為SKIPIF1<0,則SKIPIF1<0=.【答案】16【詳解】由等差數(shù)列性質(zhì)知:SKIPIF1<0也成等差,所以SKIPIF1<0成等差,即SKIPIF1<0,因此SKIPIF1<0,故答案為16.5.(2022·四川南充·三模(理))若等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0_____.【答案】511【詳解】因為等比數(shù)列中SKIPIF1<0成等比數(shù)列,所以SKIPIF1<0成等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0.故答案為:5116.(2022·新疆維吾爾自治區(qū)喀什第二中學(xué)高三階段練習(xí))已知等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0【詳解】SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0成等比數(shù)列,即SKIPIF1<0,因此,SKIPIF1<0.故答案為:SKIPIF1<0.7.(2022·廣東·潮州市湘橋區(qū)南春中學(xué)高二階段練習(xí))已知SKIPIF1<0為等比數(shù)列SKIPIF1<0的前n項和,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0_____________.【答案】30【詳解】SKIPIF1<0由等比數(shù)列的性質(zhì)可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0構(gòu)成首項為10,公比為1的等比數(shù)列,所以SKIPIF1<08.(2022·全國·高二課時練習(xí))一個等比數(shù)列的前SKIPIF1<0項和為10,前SKIPIF1<0項和為30,則前SKIPIF1<0項和為_____________.【答案】70【詳解】試題分析:由題意得SKIPIF1<09.(2022·全國·高二課時練習(xí))已知數(shù)列是等比數(shù)列,其前SKIPIF1<0項和為SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0___________.【答案】【詳解】解:因為等比數(shù)列等長連續(xù)片段的和為等比數(shù)列,因此設(shè)前10項的和為20,那么依次得到40,80,160,這樣可知前30項的和為140,那么比值即為140:2=7突破七:兩個等差數(shù)列前SKIPIF1<0項和比的問題
1.(2022·云南昭通·高三期末(理))等差數(shù)列SKIPIF1<0的前n項和分別為SKIPIF1<0,則SKIPIF1<0的公差為___________.【答案】8【詳解】SKIPIF1<0可得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的公差為8.故答案為:8.2.(2022·上?!じ呷龑n}練習(xí))已知數(shù)列SKIPIF1<0、SKIPIF1<0均為正項等比數(shù)列,SKIPIF1<0、SKIPIF1<0分別為數(shù)列SKIPIF1<0、SKIPIF1<0的前SKIPIF1<0項積,且SKIPIF1<0,則SKIPIF1<0的值為___________.【答案】SKIPIF1<0【詳解】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,則SKIPIF1<0(常數(shù)),所以,數(shù)列SKIPIF1<0為等差數(shù)列,同理可知,數(shù)列SKIPIF1<0也為等差數(shù)列,因為SKIPIF1<0,同理可得SKIPIF1<0,因此,SKIPIF1<0.故答案為:SKIPIF1<0.3.(2022·天津·南開中學(xué)高二期末)設(shè)等差數(shù)列SKIPIF1<0,SKIPIF1<0的前SKIPIF1<0項和分別為SKIPIF1<0,SKIPIF1<0,若對任意自然數(shù)SKIPIF1<0都有SKIPIF1<0,則SKIPIF1<0的值為______.【答案】SKIPIF1<0【詳解】由等差數(shù)列的性質(zhì)可得:SKIPIF1<0.對于任意的SKIPIF1<0都有SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0.4.(2022·上?!じ叨n時練習(xí))已知兩個等差數(shù)列SKIPIF1<0和SKIPIF1<0的前SKIPIF1<0項和的比SKIPIF1<0,則它們相應(yīng)的第SKIPIF1<0項的比SKIPIF1<0______.【答案】SKIPIF1<0【詳解】由等差數(shù)列的求和公式可得SKIPIF1<0,同理可得SKIPIF1<0,所以,SKIPIF1<0.故答案為:SKIPIF1<0.5.(2022·四川·達(dá)州市第一中學(xué)校高一階段練習(xí))已知等差數(shù)列SKIPIF1<0,SKIPIF1<0的前SKIPIF1<0項和分別為SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【詳解】∵數(shù)列SKIPIF1<0,SKIPIF1<0都是等差數(shù)列,∴SKIPIF1<0.故答案為:SKIPIF1<0.6.(2022·全國·高二課時練習(xí))等差數(shù)列SKIPIF1<0,SKIPIF1<0的前SKIPIF1<0項和分別為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【詳解】SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0故答案為SKIPIF1<07.(2022·福建·莆田第五中學(xué)高三期中)已知SKIPIF1<0、SKIPIF1<0分別是等差數(shù)列SKIPIF1<0、SKIPIF1<0的前SKIPIF1<0項的和,且SKIPIF1<0.則SKIPIF1<0______.【答案】【詳解】試題分析:由等差數(shù)列性質(zhì)可知SKIPIF1<0第三部分:沖刺重難點特訓(xùn)一、單選題1.(2022·全國·模擬預(yù)測)設(shè)SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和,且SKIPIF1<0,都有SKIPIF1<0.若SKIPIF1<0,則(
)A.SKIPIF1<0的最小值是SKIPIF1<0 B.SKIPIF1<0的最小值是SKIPIF1<0C.SKIPIF1<0的最大值是SKIPIF1<0 D.SKIPIF1<0的最大值是SKIPIF1<0【答案】A【詳解】由SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0為遞增的等差數(shù)列,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0且SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0且SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0有最小值,最小值為SKIPIF1<0.故選:A.2.(2022·甘肅·高臺縣第一中學(xué)模擬預(yù)測(理))已知SKIPIF1<0是各項不全為零的等差數(shù)列,前n項和是SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,則正整數(shù)m=(
)A.2020 B.2019 C.2018 D.2017【答案】C【詳解】因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:C3.(2022·浙江臺州·模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.1 B.2 C.3 D.2022【答案】A【詳解】令SKIPIF1<0,則SKIPIF1<0故SKIPIF1<0,SKIPIF1<0為常數(shù),故數(shù)列SKIPIF1<0是等差數(shù)列SKIPIF1<0SKIPIF1<0SKIPIF1<0故選:A.4.(2022·甘肅·高臺縣第一中學(xué)模擬預(yù)測(文))已知正項等比數(shù)列SKIPIF1<0滿足SKIPIF1<0(其中SKIPIF1<0),則SKIPIF1<0的最小值為(
).A.6 B.16 C.SKIPIF1<0 D.2【答案】D【詳解】解:因為等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,所以由等比數(shù)列的性質(zhì),可得SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值為2.故選:D.5.(2022·全國·模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等比中項,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由等比中項定義知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時取等號),即SKIPIF1<0的最小值為SKIPIF1<0.故選:B.6.(2022·黑龍江·哈爾濱市第一二二中學(xué)校三模(文))公比為q的等比數(shù)列SKIPIF1<0,其前n項和為SKIPIF1<0,前n項積為SKIPIF1<0,滿足SKIPIF1<0.則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0的最大值為SKIPIF1<0C.SKIPIF1<0的最大值為SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】若SKIPIF1<0,則SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 航空部件維修合同模板
- 甜品店勞動合同
- 梯阻系統(tǒng)安裝合同
- 《食管癌的治療》課件
- 《大學(xué)英語UNI》課件
- 2025年丹東a2貨運從業(yè)資格證模擬考試
- 軍訓(xùn)個人心得體會匯編15篇
- 2025年石家莊貨運從業(yè)資格證模擬考試題及答案解析
- 智能家居項目延期還款協(xié)議
- 風(fēng)電設(shè)備運輸司機(jī)聘用合同模板
- 肺膿腫小講課
- 戴明的質(zhì)量管理
- 《企業(yè)如何合理避稅》課件
- 2022-2023學(xué)年山東省淄博市張店區(qū)青島版(五年制)三年級上冊期末考試數(shù)學(xué)試卷
- 《幼兒園美術(shù)課件:認(rèn)識卡通人物》
- 科研倫理與學(xué)術(shù)規(guī)范期末考試
- 平潭君山生態(tài)水系及河道整治工程環(huán)境影響評價報告書
- 電大國開專科(附答案)《民事訴訟法學(xué)》形考在線(形考任務(wù)3)試題
- 工藝參數(shù)的調(diào)整與優(yōu)化
- 小學(xué)數(shù)學(xué)與科學(xué)融合跨學(xué)科教學(xué)案例
- 天堂-講解課件
評論
0/150
提交評論