版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第2023對數(shù)函數(shù)教案5篇2023對數(shù)函數(shù)教案(篇1)
教學(xué)目標(biāo):
1.進(jìn)一步理解對數(shù)函數(shù)的性質(zhì),能運(yùn)用對數(shù)函數(shù)的相關(guān)性質(zhì)解決對數(shù)型函數(shù)的常見問題.
2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.
教學(xué)重點(diǎn):
對數(shù)函數(shù)性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn):
對數(shù)函數(shù)的`性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.
教學(xué)過程:
一、問題情境
1.復(fù)習(xí)對數(shù)函數(shù)的性質(zhì).
2.回答下列問題.
(1)函數(shù)y=log2_的值域是;
(2)函數(shù)y=log2_(_1)的值域是;
(3)函數(shù)y=log2_(0
3.情境問題.
函數(shù)y=log2(_2+2_+2)的定義域和值域分別如何求呢?
二、學(xué)生活動(dòng)
探究完成情境問題.
三、數(shù)學(xué)運(yùn)用
例1求函數(shù)y=log2(_2+2_+2)的定義域和值域.
四、練習(xí):
(1)已知函數(shù)y=log2_的值域是[-2,3],則_的范圍是__.
(2)函數(shù),_(0,8]的值域是.
(3)函數(shù)y=log(_2-6_+17)的值域.
(4)函數(shù)的值域是__.
例2判斷下列函數(shù)的奇偶性:
(1)f(_)=lg(2)f(_)=ln(-_)
例3已知loga0.751,試求實(shí)數(shù)a取值范圍.
例4已知函數(shù)y=loga(1-a_)(a0,a1).
(1)求函數(shù)的定義域與值域;
(2)求函數(shù)的單調(diào)區(qū)間.
練習(xí):
1.下列函數(shù)(1)y=_-1;(2)y=log2(_-1);(3)y=;(4)y=ln_,其中值域?yàn)镽的有(請寫出所有正確結(jié)論的序號(hào)).
2.函數(shù)y=lg(-1)的圖象關(guān)于對稱.
3.已知函數(shù)(a0,a1)的圖象關(guān)于原點(diǎn)對稱,那么實(shí)數(shù)m=.
4.求函數(shù),其中_[,9]的值域.
五、要點(diǎn)歸納與方法小結(jié)
(1)借助于對數(shù)函數(shù)的性質(zhì)研究對數(shù)型函數(shù)的定義域與值域;
(2)換元法;
(3)能畫出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).
六、作業(yè)
課本P70~71-4,5,10,11.
2023對數(shù)函數(shù)教案(篇2)
一、內(nèi)容與解析
(一)內(nèi)容:對數(shù)函數(shù)的概念與圖象
(二)解析:本節(jié)課要學(xué)的內(nèi)容是什么是對數(shù)函數(shù),對數(shù)函數(shù)的圖象形狀及畫法,其核心是對數(shù)函數(shù)的圖象畫法,理解它關(guān)鍵就是要理解掌握對數(shù)函數(shù)的圖象特點(diǎn).學(xué)生已經(jīng)掌握了指數(shù)函數(shù)的圖象畫法及特點(diǎn),函數(shù)圖象的一般畫法,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的發(fā)展.由于它是研究對數(shù)函數(shù)性質(zhì)的依據(jù),是本學(xué)科的核心內(nèi)容.教學(xué)的重點(diǎn)是對數(shù)函數(shù)的圖象特點(diǎn)與畫法,解決重點(diǎn)的關(guān)鍵是利用函數(shù)圖象的一般畫法畫出具體對數(shù)函數(shù)的圖象,從而歸納出對數(shù)函數(shù)的圖象特點(diǎn),再根據(jù)圖象特點(diǎn)確定對數(shù)函數(shù)的一般畫法。
二、教學(xué)目標(biāo)及解析
(一)教學(xué)目標(biāo):
1,理解對數(shù)函數(shù)的概念;掌握對數(shù)函數(shù)的圖象的特點(diǎn)及畫法。
2,通過具體實(shí)例,直觀感受對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系;通過具體的函數(shù)圖象的畫法逐步認(rèn)識(shí)對數(shù)函數(shù)的特征;
3,培養(yǎng)學(xué)生運(yùn)用類比方法探索研究數(shù)學(xué)問題的素養(yǎng),提高學(xué)生分析問題、解決問題的能力。
(二)解析:
1,理解對數(shù)函數(shù)的概念是來源于實(shí)踐的,能從函數(shù)概念的角度闡述其意義;掌握對數(shù)函數(shù)的圖象和性質(zhì),做到能畫草圖,能分析圖象,能從圖象觀察得出對數(shù)函數(shù)的單調(diào)性、值域、定點(diǎn)等;了解同底指數(shù)函數(shù)和對數(shù)函數(shù)互為反函數(shù),能說出它們的圖象之間的關(guān)系,知道它們的定義域和值域之間的關(guān)系,了解反函數(shù)帶有逆運(yùn)算的意味;
2,通過具體的實(shí)例,歸納得出一般的函數(shù)圖象特征,并能夠通過圖象特征得到相應(yīng)的函數(shù)特征,培養(yǎng)學(xué)生的作圖、識(shí)圖的能力和歸納總結(jié)能力;
3,類比指數(shù)函數(shù)的圖象和性質(zhì)的研究方法,來研究對數(shù)函數(shù),讓學(xué)生認(rèn)識(shí)到研究問題的方法上的一般性;同時(shí),讓學(xué)生認(rèn)識(shí)到類比這一數(shù)學(xué)思想,即對相似的問題可以借鑒之前問題的研究方法來研究,有助于提高學(xué)生分析問題、解決問題的能力。
三、問題診斷分析
本節(jié)課容易出現(xiàn)的問題是:對數(shù)函數(shù)的圖象特點(diǎn)的探究容易出現(xiàn)圖象不對、歸納不全、有所偏差等情形。出現(xiàn)這一問題的原因是:學(xué)生作圖能力、識(shí)圖能力、歸納能力不強(qiáng)。要解決這一問題,教師要通過讓學(xué)生類比指數(shù)函數(shù)圖象和性質(zhì)的探究,時(shí)時(shí)回過頭看看之前是怎么做的,考慮了哪些問題,得到了哪些結(jié)論,讓學(xué)生類比自主探究,必要時(shí)給予適當(dāng)引導(dǎo),讓學(xué)生自主的得出結(jié)論,對于出錯(cuò)的地方要讓學(xué)生討論,教師做出適當(dāng)?shù)脑u價(jià)并最終給出結(jié)論。
四、教學(xué)支持條件分析
在本節(jié)課__的教學(xué)中,準(zhǔn)備使用__,因?yàn)槭褂胈_,有利于__.
五、教學(xué)過程
問題1.前面我們已經(jīng)掌握了指數(shù)函數(shù)的概念、圖象與性質(zhì),知道了指數(shù)函數(shù)是基本初等函數(shù)之一?,F(xiàn)在學(xué)習(xí)的對數(shù),也可以構(gòu)成一種函數(shù),我們稱之為對數(shù)函數(shù),那么什么樣的函數(shù)稱為對數(shù)函數(shù)呢?
[設(shè)計(jì)意圖]新課標(biāo)強(qiáng)調(diào)考慮到多數(shù)高中生的認(rèn)知特點(diǎn),為了有助于他們對函數(shù)概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實(shí)際問題入手。因此,新課引入不是按舊教材從反函數(shù)出發(fā),而是選擇從兩個(gè)材料引出對數(shù)函數(shù)的概念,讓學(xué)生熟悉它的知識(shí)背景,初步感受對數(shù)函數(shù)是刻畫現(xiàn)實(shí)世界的又一重要數(shù)學(xué)模型。這樣處理,對數(shù)函數(shù)顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)
小問題串
1.2.2.1的例6,考古學(xué)家是如何估算出土文物或古遺址的年代的?這種對應(yīng)關(guān)系是否形成函數(shù)關(guān)系?
2.某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),如果要求這種細(xì)胞經(jīng)過多少次分裂,大約可以得到細(xì)胞1萬個(gè),10萬個(gè)。怎么求?相應(yīng)的對應(yīng)關(guān)系是否也形成函數(shù)關(guān)系?
3.由上述兩個(gè)實(shí)例,請你類比指數(shù)函數(shù)的概念歸納對數(shù)函數(shù)的概念
觀察這些函數(shù)的特征:含有對數(shù)符號(hào),底數(shù)是常數(shù),真數(shù)是變量,從而得出對數(shù)函數(shù)的定義:函數(shù),且叫做對數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+).
注意:○1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別.如:,都不是對數(shù)函數(shù).○2對數(shù)函數(shù)對底數(shù)的限制:,且.
4.根據(jù)對數(shù)函數(shù)定義填空;
例1(1)函數(shù)y=loga_2的定義域是__(其中a1)
(2)函數(shù)y=loga(4-_)的定義域是__(其中a1)
說明:本例主要考察對數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對概念的理解,所以把教材中的解答題改為填空題,節(jié)省時(shí)間,點(diǎn)到為止,以避免挖深、拓展、引入復(fù)合函數(shù)的概念。
問題2.對數(shù)函數(shù)的圖象是什么樣?有什么特點(diǎn)呢?
[設(shè)計(jì)意圖]舊教材是通過對稱變換直接從指數(shù)函數(shù)的圖象得到對數(shù)函數(shù)圖象,這樣處理學(xué)生雖然會(huì)接受了這個(gè)事實(shí),但對圖象的感覺是膚淺的;這樣處理也存在著函數(shù)教學(xué)忽視圖象、性質(zhì)的認(rèn)知過程而注重應(yīng)用的功利思想。因此,本節(jié)課的設(shè)計(jì)注重引導(dǎo)學(xué)生用特殊到一般的方法探究對數(shù)函數(shù)圖象的形成過程,加深感性認(rèn)識(shí)。同時(shí),幫助學(xué)生確定探究問題、探究方向和探究步驟,確保探究的有效性。這個(gè)環(huán)節(jié),還要借助計(jì)算機(jī)輔助教學(xué)作用,增強(qiáng)學(xué)生的直觀感受
小問題串
1.(1)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對數(shù)函數(shù)的圖象
(2)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對數(shù)函數(shù)的圖象
2.觀察對數(shù)函數(shù)、與、的圖象特征,看看它們有那些異同點(diǎn)。
3.利用計(jì)算器或計(jì)算機(jī),選取底數(shù),且的若干個(gè)不同的值,在同一平面直角坐標(biāo)系中作出相應(yīng)對數(shù)函數(shù)的圖象。觀察圖象,它們有哪些共同特征?
4.歸納出能體現(xiàn)對數(shù)函數(shù)的代表性圖象,并說明以后如何畫對數(shù)函數(shù)的簡圖。
例題
1.課本P75A組第10題
2.求函數(shù)的定義域,并畫出函數(shù)的圖象。
六、目標(biāo)檢測
求下列函數(shù)的定義域
2023對數(shù)函數(shù)教案(篇3)
教學(xué)目標(biāo)
1.在指數(shù)函數(shù)及反函數(shù)概念的基礎(chǔ)上,使學(xué)生掌握對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖像,掌握對數(shù)函數(shù)的性質(zhì),并初步應(yīng)用性質(zhì)解決簡單問題.
2.通過對數(shù)函數(shù)的學(xué)習(xí),樹立相互聯(lián)系,相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合,分類討論的思想.
3.通過對數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析,歸納的思維能力,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)是理解對數(shù)函數(shù)的定義,掌握圖像和性質(zhì).
難點(diǎn)是由對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關(guān)系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對數(shù)函數(shù)的圖像和性質(zhì).
教學(xué)方法
啟發(fā)研討式
教學(xué)用具
投影儀
教學(xué)過程
一.引入新課
今天我們一起再來研究一種常見函數(shù).前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實(shí)質(zhì)是研究兩個(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù).
提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
由學(xué)生說出是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個(gè)學(xué)生口答求反函數(shù)的過程:
由得.又的值域?yàn)椋?/p>
所求反函數(shù)為.
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).
二.對數(shù)函數(shù)的圖像與性質(zhì)(板書)
1.作圖方法
提問學(xué)生打算用什么方法來畫函數(shù)圖像?學(xué)生應(yīng)能想到利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.同時(shí)教師也應(yīng)指出用列表描點(diǎn)法也是可以的,讓學(xué)生從中選出一種,最終確定用圖像變換法畫圖.
由于指數(shù)函數(shù)的圖像按和分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況和,并分別以和為例畫圖.
具體操作時(shí),要求學(xué)生做到:
(1)指數(shù)函數(shù)和的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢等).
(2)畫出直線.
(3)的圖像在翻折時(shí)先將特殊點(diǎn)對稱點(diǎn)找到,變化趨勢由靠近軸對稱為逐漸靠近軸,而的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在左側(cè)的先翻,然后再翻在右側(cè)的部分.
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出和的圖像.(此時(shí)同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:
2.草圖.
教師畫完圖后再利用投影儀將和的圖像畫在同一坐標(biāo)系內(nèi),如圖:
然后提出讓學(xué)生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說明)
3.性質(zhì)
(1)定義域:
(2)值域:
由以上兩條可說明圖像位于軸的右側(cè).
(3)截距:令得,即在軸上的截距為1,與軸無交點(diǎn)即以軸為漸近線.
(4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對稱,也不關(guān)于軸對稱.
(5)單調(diào)性:與有關(guān).當(dāng)時(shí),在上是增函數(shù).即圖像是上升的
當(dāng)時(shí),在上是減函數(shù),即圖像是下降的.
之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
當(dāng)時(shí),有;當(dāng)時(shí),有.
學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書記下來.
最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性)
對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.
三.鞏固練習(xí)
練習(xí):若,求的取值范圍.
四.小結(jié)
五.作業(yè)略
2023對數(shù)函數(shù)教案(篇4)
一、說教材
1、教材的地位和作用
函數(shù)是高中數(shù)學(xué)的核心,而對數(shù)函數(shù)是高中階段所要研究的重要的基本初等函數(shù)之一.本節(jié)內(nèi)容是在學(xué)生已經(jīng)學(xué)過指數(shù)函數(shù)、對數(shù)及反函數(shù)的基礎(chǔ)上引入的,因此既是對上述知識(shí)的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對數(shù)函數(shù)在生產(chǎn)、生活實(shí)踐中都有許多應(yīng)用.本節(jié)課的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整、系統(tǒng),為學(xué)生今后進(jìn)一步學(xué)習(xí)對數(shù)方程、對數(shù)不等式等提供了必要的基礎(chǔ)知識(shí).
2、教學(xué)目標(biāo)的確定及依據(jù)
根據(jù)教學(xué)大綱要求,結(jié)合教材,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定了如下的教學(xué)目標(biāo):
(1)知識(shí)目標(biāo):理解對數(shù)函數(shù)的意義;掌握對數(shù)函數(shù)的圖像與性質(zhì);初步學(xué)會(huì)用
對數(shù)函數(shù)的性質(zhì)解決簡單的問題.
(2)能力目標(biāo):滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、
分析、歸納等邏輯思維能力.
(3)情感目標(biāo):通過指數(shù)函數(shù)和對數(shù)函數(shù)在圖像與性質(zhì)上的對比,使學(xué)生欣賞數(shù)
學(xué)的精確和美妙之處,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
3、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):對數(shù)函數(shù)的意義、圖像與性質(zhì).
難點(diǎn):對數(shù)函數(shù)性質(zhì)中對于在a1與01兩種情況函數(shù)值的不同變化.
二、說教法
學(xué)生在整個(gè)教學(xué)過程中始終是認(rèn)知的主體和發(fā)展的主體,教師作為學(xué)生學(xué)習(xí)的指導(dǎo)者,應(yīng)充分地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,有效地滲透數(shù)學(xué)思想方法.根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),對于本節(jié)課我主要考慮了以下兩個(gè)方面:
1、教學(xué)方法:
(1)啟發(fā)引導(dǎo)學(xué)生實(shí)驗(yàn)、觀察、聯(lián)想、思考、分析、歸納;
(2)采用“從特殊到一般”、“從具體到抽象”的方法;
(3)滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法.
2、教學(xué)手段:
計(jì)算機(jī)多媒體輔助教學(xué).
三、說學(xué)法
“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學(xué)生受益終身.本節(jié)課注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):
(1)類比學(xué)習(xí):與指數(shù)函數(shù)類比學(xué)習(xí)對數(shù)函數(shù)的圖像與性質(zhì).
(2)探究定向性學(xué)習(xí):學(xué)生在教師建立的情境下,通過思考、分析、操作、探索,
歸納得出對數(shù)函數(shù)的圖像與性質(zhì).
(3)主動(dòng)合作式學(xué)習(xí):學(xué)生在歸納得出對數(shù)函數(shù)的圖像與性質(zhì)時(shí),通過小組討論,
使問題得以圓滿解決.
四、說教程
1、溫故知新
我通過復(fù)習(xí)細(xì)胞分裂問題,由指數(shù)函數(shù)引導(dǎo)學(xué)生逐步得到對數(shù)函數(shù)的意義及對數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系:互為反函數(shù).
設(shè)計(jì)意圖:既復(fù)習(xí)了指數(shù)函數(shù)和反函數(shù)的有關(guān)知識(shí),又與本節(jié)內(nèi)容有密切關(guān)系,
有利于引出新課.為學(xué)生理解新知清除了障礙,有意識(shí)地培養(yǎng)學(xué)生
分析問題的能力.
2、探求新知
2023對數(shù)函數(shù)教案(篇5)
一、內(nèi)容與解析
(一)內(nèi)容:對數(shù)函數(shù)的性質(zhì)
(二)解析:本節(jié)課要學(xué)的內(nèi)容是對數(shù)函數(shù)的性質(zhì)及簡單應(yīng)用,其核心(或關(guān)鍵)是對數(shù)函數(shù)的性質(zhì),理解它關(guān)鍵就是要利用對數(shù)函數(shù)的圖象.學(xué)生已經(jīng)掌握了對數(shù)函數(shù)的圖象特點(diǎn),本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的發(fā)展.由于它是構(gòu)造復(fù)雜函數(shù)的基本元素之一,所以對數(shù)函數(shù)的性質(zhì)是本單元的重要內(nèi)容之一.的重點(diǎn)是掌握對數(shù)函數(shù)的性質(zhì),解決重點(diǎn)的關(guān)鍵是利用對數(shù)函數(shù)的圖象,通過數(shù)形結(jié)合的思想進(jìn)行歸納總結(jié)。
二、目標(biāo)及解析
(一)教學(xué)目標(biāo):
1.掌握對數(shù)函數(shù)的性質(zhì)并能簡單應(yīng)用
(二)解析:
(1)就是指根據(jù)對數(shù)函數(shù)的兩類圖象總結(jié)并理解對數(shù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、函數(shù)值的分布特征等性質(zhì),并能將這些性質(zhì)應(yīng)用到簡單的問題中。
三、問題診斷分析
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是底數(shù)a對對數(shù)函數(shù)圖象和性質(zhì)的影響,產(chǎn)生這一問題的原因是學(xué)生對參量認(rèn)識(shí)不到位,往往將參量等同于自變量.要解決這一問題,就是要將參量的取值多元化,最好應(yīng)用幾何畫板的快捷性處理這類問題,其中關(guān)鍵是應(yīng)用好幾何畫板.
四、教學(xué)支持條件分析
在本節(jié)課__的教學(xué)中,準(zhǔn)備使用__,因?yàn)槭褂胈_,有利于__.
五、教學(xué)過程
問題1.先畫出下列函數(shù)的簡圖,再根據(jù)圖象歸納總結(jié)對數(shù)函數(shù)的相關(guān)性質(zhì)。
設(shè)計(jì)意圖:
師生活動(dòng)(小問題):
1.這些對數(shù)函數(shù)的解析式有什么共同特征?
2.通過這些函數(shù)的圖象請從值域、單調(diào)性、奇偶性方面進(jìn)行總結(jié)函數(shù)的性質(zhì)。
3.通過這些函數(shù)圖象請從函數(shù)值的分布角度總結(jié)相關(guān)性質(zhì)
4.通過這些函數(shù)圖象請總結(jié):當(dāng)自變量取一個(gè)值時(shí),函數(shù)值隨底數(shù)有什么樣的變化規(guī)律?
問題2.先畫出下列函數(shù)的簡圖,根據(jù)圖象歸納總結(jié)對數(shù)函數(shù)的相關(guān)性質(zhì)。
問題3.根據(jù)問題1、2填寫下表
圖象特征函數(shù)性質(zhì)
a>10<a<1a>10<a<1
向y軸正負(fù)方向無限延伸函數(shù)的值域?yàn)镽+
圖象關(guān)于原點(diǎn)和y軸不對稱非奇非偶函數(shù)
函數(shù)圖象都在y軸右側(cè)函數(shù)的定義域?yàn)镽
函數(shù)圖象都過定點(diǎn)(1,0)
自左向右,圖象逐漸上升自左向右,圖象逐漸下降增函數(shù)減函數(shù)
在第一象限內(nèi)的圖象縱坐標(biāo)都大于0,橫坐標(biāo)大于1在第一象限內(nèi)的圖象縱坐標(biāo)都大于0,橫標(biāo)大于0小于1
在第四象限內(nèi)的圖象縱坐標(biāo)都小于0,橫標(biāo)大于0小于1在第四象限內(nèi)的圖象縱坐標(biāo)都小于0,橫標(biāo)大于1
[設(shè)計(jì)意圖]發(fā)現(xiàn)性質(zhì)、弄清性質(zhì)的來龍去脈,是為了更好揭示對數(shù)函數(shù)的本質(zhì)屬性,傳統(tǒng)教學(xué)往往讓學(xué)生在解題中領(lǐng)悟。為了扭轉(zhuǎn)這種方式,我先引導(dǎo)學(xué)生回顧指數(shù)函數(shù)的性質(zhì),再利用類比的思想,小組合作的形式通過圖象主動(dòng)探索出對數(shù)函數(shù)的性質(zhì)。教學(xué)實(shí)踐表明:當(dāng)學(xué)生對對數(shù)函數(shù)的圖象已有感性認(rèn)識(shí)后,得到這些性質(zhì)必然水到渠成
例1.比較下列各組數(shù)中兩個(gè)值的大?。?/p>
(1)log23.4,log28.5(2)log0.31.8,log0.32.7
(3)loga5.1,loga5.9(a>0,且a≠1)
變式訓(xùn)練:1.比較下列各題中兩個(gè)值的大小:
⑴log106log108⑵log0.56log0.54
⑶log0.10.5log0.10.6⑷log1.50.6log1.50.4
2.已知下列不等式,比較正數(shù)m,n的大?。?/p>
(1)log3mlog3n(2)log0.3mlog0.3n
(3)logamlogan(0logan(a1)
例2.(1)若且,求的取值范圍
(2)已知,求的取值范圍;
六、目標(biāo)檢測
1.比較,,的大小:
2.求下列各式中的_的值
(1)
演繹推理導(dǎo)學(xué)案
2.1.2演繹推理
學(xué)習(xí)目標(biāo)
1.結(jié)合已學(xué)過的數(shù)學(xué)實(shí)例和生活中的實(shí)例,體會(huì)演繹推理的重要性;
2.掌握演繹推理的基本方法,并能運(yùn)用它們進(jìn)行一些簡單的推理.
學(xué)習(xí)過程
一、前準(zhǔn)備
復(fù)習(xí)1:歸納推理是由到的推理.
類比推理是由到的推理.
復(fù)習(xí)2:合情推理的結(jié)論.
二、新導(dǎo)學(xué)
學(xué)習(xí)探究
探究任務(wù)一:演繹推理的概念
問題:觀察下列例子有什么特點(diǎn)?
(1)所有的金屬都能夠?qū)щ?,銅是金屬,所以;
(2)一切奇數(shù)都不能被2整除,2007是奇數(shù),所以;
(3)三角函數(shù)都是周期函數(shù),是三角函數(shù),所以;
(4)兩條直線平行,同旁內(nèi)角互補(bǔ).如果A與B是兩條平行直線的同旁內(nèi)角,那么.
新知:演繹推理是
的推理.簡言之,演繹推理是由到的推理.
探究任務(wù)二:觀察上述例子,它們都由幾部分組成,各部分有什么特點(diǎn)?
所有的金屬都導(dǎo)電銅是金屬銅能導(dǎo)電
已知的一般原理特殊情況根據(jù)原理,對特殊情況做出的判斷
大前提小前提結(jié)論
新知:“三段論”是演繹推理的一般模式:
大前提——;
小前提——;
結(jié)論——.
新知:用集合知識(shí)說明“三段論”:
大前提:
小前提:
結(jié)論:
試試:請把探究任務(wù)一中的演繹推理(2)至(4)寫成“三段論”的形式.
※典型例題
例1命題:等腰三角形的兩底角相等
已知:
求證:
證明:
把上面推理寫成三段論形式:
變式:已知空間四邊形ABCD中,點(diǎn)E,F分別是AB,AD的中點(diǎn),求證:EF平面BCD
例2求證:當(dāng)a1時(shí),有
動(dòng)手試試:1證明函數(shù)的值恒為正數(shù)。
2下面的推理形式正確嗎?推理的結(jié)論正確嗎?為什么?
所有邊長相等的凸多邊形是正多邊形,(大前提)
菱形是所有邊長都相等的凸多邊形,(小前提)
菱形是正
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院護(hù)工保密協(xié)議書范本(3篇)
- 舞蹈新生班主題課程設(shè)計(jì)
- 藝術(shù)與設(shè)計(jì)課程設(shè)計(jì)案例
- 自然探索團(tuán)隊(duì)課程設(shè)計(jì)
- 簡易課程設(shè)計(jì)
- 英語詞匯班課程設(shè)計(jì)
- 正太分布課程設(shè)計(jì)
- 綠色蟈蟈課程設(shè)計(jì)
- 財(cái)務(wù)制度匯編
- 《刑罰的體系與種類》課件
- 小學(xué)思政課《愛國主義教育》
- 中藥材的性狀及真?zhèn)舞b別培訓(xùn)-課件
- 泵站項(xiàng)目劃分
- 綠化養(yǎng)護(hù)工作檢查及整改記錄表
- 新能源發(fā)電技術(shù)學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- GB/T 42752-2023區(qū)塊鏈和分布式記賬技術(shù)參考架構(gòu)
- Module 9 (教案)外研版(一起)英語四年級上冊
- 初中物理-初三物理模擬試卷講評課教學(xué)課件設(shè)計(jì)
- DG-TJ 08-2367-2021 既有建筑外立面整治設(shè)計(jì)標(biāo)準(zhǔn)
- 公文流轉(zhuǎn)單(標(biāo)準(zhǔn)模版)
- XXX大中型公司報(bào)價(jià)管理辦法
評論
0/150
提交評論