版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第八章系統(tǒng)的狀態(tài)變量分析新工科建設(shè)·電子信息類系列教材信號與系統(tǒng)分析(第3版)01引言引言分析一個系統(tǒng)時,首先要建立描述系統(tǒng)的數(shù)學(xué)模型。根據(jù)數(shù)學(xué)模型的不同,描述系統(tǒng)的方法有輸入-輸出法和狀態(tài)變量分析法。輸入-輸出法著重系統(tǒng)輸入和輸出之間的關(guān)系,并且只研究系統(tǒng)的端口特性,所以也稱為外部法。當(dāng)系統(tǒng)比較復(fù)雜、輸入和輸出是多個時,采用輸入-輸出法來分析系統(tǒng)就比較困難。狀態(tài)變量分析法是現(xiàn)代控制理論的重要標(biāo)志,又叫作內(nèi)部法,著重系統(tǒng)內(nèi)部特性的描述它用狀態(tài)變量描述系統(tǒng)的內(nèi)部特性,并且又通過狀態(tài)變量將系統(tǒng)的輸人-輸出變量聯(lián)系起來以描述系統(tǒng)的外部特性。引言與輸入-輸出法相比,狀態(tài)變量分析法有以下優(yōu)點。(1)可以獲得系統(tǒng)更多的內(nèi)部信息,既能根據(jù)輸入-輸出之間的關(guān)系求出響應(yīng)信號,也可以提供系統(tǒng)的內(nèi)部狀況。(2)不管系統(tǒng)多復(fù)雜,其數(shù)學(xué)模型都相同,分析方法的程序也相同,便于使用計算機分析特別適應(yīng)于多輸人、多輸出的系統(tǒng)。(3)建立的數(shù)學(xué)模型都是一階微分(或差分)方程組,這樣更適合于用計算機進(jìn)行數(shù)值計算。(4)不僅適應(yīng)于LTI系統(tǒng),也適應(yīng)于非線性系統(tǒng)和時變系統(tǒng)。02狀態(tài)變量與狀態(tài)方程狀態(tài)變量與狀態(tài)方程狀態(tài)與狀態(tài)變量為了說明系統(tǒng)狀態(tài)與狀態(tài)變量的概念,先來觀察一個系統(tǒng)。圖8-1所示電路為一個二階動態(tài)系統(tǒng),激勵為電流源
。根據(jù)KCL定律和KVL定律,可寫出下列方程整理得狀態(tài)變量與狀態(tài)方程狀態(tài)與狀態(tài)變量若以電路的電壓v(t)和電容的電流ic(t)為輸出,可得由式(8-2)可以看出,它是以il(t)和vc(t)作為變量的方程組,只要知道il(t)和vc(t)的初始情況及激勵is(t)的情況,就可完全確定系統(tǒng)的全部行為。這種描述系統(tǒng)的方法就叫作狀態(tài)變量分析法。狀態(tài)變量與狀態(tài)方程狀態(tài)與狀態(tài)變量下面給出系統(tǒng)的狀態(tài)變量分析法中常見的幾個名詞的定義。狀態(tài):一個動態(tài)系統(tǒng)的狀態(tài)就是指系統(tǒng)特征過去、現(xiàn)在和未來發(fā)展變化的情況。狀態(tài)變量:用來描述系統(tǒng)狀態(tài)的數(shù)目最小(獨立)的一組變量。狀態(tài)矢量:能夠完全描述一個系統(tǒng)行為的n個狀態(tài)變量,可以看成一個矢量x(t)的各分量坐標(biāo),此時x(t)就叫作狀態(tài)矢量,并可將其列成矩陣的形式。狀態(tài)空間:狀態(tài)矢量x(t)所在的空間叫作狀態(tài)空間。狀態(tài)矢量:所含分量的個數(shù)就是空間的維數(shù)。狀態(tài)軌跡:在狀態(tài)空間中,狀態(tài)矢量的端點隨時間變化而描述的路徑,稱為狀態(tài)軌跡。狀態(tài)變量與狀態(tài)方程輸出方程:描述系統(tǒng)的輸出與狀態(tài)變量及系統(tǒng)輸入之間關(guān)系的方程,稱為輸出方程。通常,狀態(tài)方程和輸出方程總稱為動態(tài)方程或系統(tǒng)方程。狀態(tài)方程與輸出方程狀態(tài)方程:狀態(tài)變量分析法所用的數(shù)學(xué)模型稱為狀態(tài)方程。對于連續(xù)時間系統(tǒng),狀態(tài)方程一階微分方程組;對于離散時間系統(tǒng),狀態(tài)方程為一階差分方程組。狀態(tài)變量與狀態(tài)方程連續(xù)時間系統(tǒng)狀態(tài)方程和輸出方程的一般形式對于一般的n階多輸人-多輸出LTI連續(xù)時間系統(tǒng),如圖8-2所示。離散時間系統(tǒng)狀態(tài)方程和輸出方程的一般形式對于一般的n階多輸人-多輸出LTI離散時間系統(tǒng),如圖8-4所示。狀態(tài)方程與輸出方程2狀態(tài)變量與狀態(tài)方程狀態(tài)方程與輸出方程根據(jù)線性離散時間系統(tǒng)狀態(tài)方程和輸出方程的標(biāo)準(zhǔn)形式可畫出離散時間系統(tǒng)的矩陣框圖,如圖8-5所示。03狀態(tài)方程的建立狀態(tài)方程的建立對于給定的系統(tǒng),用狀態(tài)變量法分析時,最關(guān)鍵的是如何建立狀態(tài)方程和輸出方程。建立狀態(tài)方程的方法大致分為直接法和間接法兩種。直接法是指根據(jù)系統(tǒng)結(jié)構(gòu)直接列寫狀態(tài)方程,適用于電路系統(tǒng)的分析;而間接法是根據(jù)描述系統(tǒng)的輸入-輸出方程、系統(tǒng)函數(shù)、系統(tǒng)的框圖或信號流圖等來建立狀態(tài)方程。狀態(tài)方程的建立連續(xù)時間系統(tǒng)狀態(tài)方程的建立1.由電路圖建立狀態(tài)方程根據(jù)電路圖直接建立狀態(tài)方程,首先要正確選擇狀態(tài)變量。在電路系統(tǒng)中,一般可選電容電壓或者電感電流為狀態(tài)變量。狀態(tài)變量是一組獨立變量,其個數(shù)等于系統(tǒng)的階數(shù)。對于電路系統(tǒng),狀態(tài)變量的個數(shù)即獨立電容和獨立電感的個數(shù)。在電路中,當(dāng)若干電感串聯(lián)時,由于各電感的電流相同,所以只有一個獨立的電感電流;同理,當(dāng)若干電容并聯(lián)時,因為電容的電壓值相同,所以也只有一個獨立的電容電壓。狀態(tài)方程的建立連續(xù)時間系統(tǒng)狀態(tài)方程的建立2.由輸入-輸出方程建立狀態(tài)方程對于連續(xù)時間系統(tǒng)來說,微分方程是幾階的,狀態(tài)變量就有幾個。如果給出的微分方程右邊不含有輸入f(t)的導(dǎo)數(shù)項,則不再需要假設(shè)輔助變量,可直接選用輸出y(t)及其各階導(dǎo)數(shù)作為狀態(tài)變量。3.由模擬框圖建立狀態(tài)方程由模擬框圖建立狀態(tài)方程時,要選擇積分器的輸出作為狀態(tài)變量,再圍繞著加法器列寫狀態(tài)方程和輸出方程。狀態(tài)方程的建立連續(xù)時間系統(tǒng)狀態(tài)方程的建立4.由系統(tǒng)函數(shù)H(s)建立狀態(tài)方程已知連續(xù)時間系統(tǒng)的系統(tǒng)函數(shù)H(s),要建立系統(tǒng)的狀態(tài)方程,比較簡單的方法是先根據(jù)系統(tǒng)函數(shù)畫出信號流圖,再列寫方程。H(s)對應(yīng)的信號流圖如圖8-8所示。狀態(tài)方程的建立010203根據(jù)差分方程列寫離散時間系統(tǒng)狀態(tài)方程的方法跟連續(xù)時間系統(tǒng)類似。該方法最關(guān)鍵的步驟也是狀態(tài)變量的選取。由輸入-輸出方程建立狀態(tài)方程由離散時間系統(tǒng)的模擬框圖來列寫系統(tǒng)的動態(tài)方程時,通常先選取延遲單元的輸出作為狀態(tài)變量,然后根據(jù)延遲單元的輸入-輸出關(guān)系及加法器來列寫方程。由模擬框圖建立狀態(tài)方程已知離散時間系統(tǒng)的系統(tǒng)函數(shù)H(z),列寫狀態(tài)方程的方法和連續(xù)時間系統(tǒng)類似,此時利用信號流圖列寫最簡便。由系統(tǒng)函數(shù)H(z)建立狀態(tài)方程離散時間系統(tǒng)狀態(tài)方程的建立04狀態(tài)方程的時域解法狀態(tài)方程的時域解法01020304連續(xù)系統(tǒng)狀態(tài)方程的時域解法離散系統(tǒng)狀態(tài)方程的時域解法離散系統(tǒng)的狀態(tài)方程為一階差分方程組,一般可用迭代法求解,因此特別適合于用計算機求解。系統(tǒng)的初始狀態(tài)矢量為x(0),在k=0時激勵f(k)接入到因果系統(tǒng)中。常用序列的Z變換如果用類似于矩陣乘法的運算規(guī)則定義兩個函數(shù)矩陣的卷積積分(注意:矩陣之間的卷積比標(biāo)量卷積復(fù)雜,遵循的是乘法運算規(guī)則,且不滿足交換律)。05狀態(tài)方程的變換域解法狀態(tài)方程的變換域解法拉普拉斯變換法求解連續(xù)系統(tǒng)的狀態(tài)方程H(s)稱為系統(tǒng)函數(shù)矩陣或轉(zhuǎn)移函數(shù)矩陣,它的任一個元素H(s)代表第個輸出分量對于第j個輸入分量的轉(zhuǎn)移函數(shù)。系統(tǒng)函數(shù)矩陣H(s)和單位沖激響應(yīng)矩陣h(t)是拉普拉斯變換對。通過以上的討論可以看出,在求解過程中最關(guān)鍵的是如何求Φ(s)。06由狀態(tài)方程判斷系統(tǒng)的穩(wěn)定性由狀態(tài)方程判斷系統(tǒng)的穩(wěn)定性系統(tǒng)函數(shù)矩陣H(s)與連續(xù)系統(tǒng)的穩(wěn)定性通過判斷特征根是否在左半平面可以判斷因果系統(tǒng)是否穩(wěn)定??梢钥闯?系統(tǒng)是否穩(wěn)定只與狀態(tài)方程中的系統(tǒng)矩陣A有關(guān)。系統(tǒng)函數(shù)矩陣H(z)與離散系統(tǒng)的穩(wěn)定性根據(jù)特征根是否在z平面的單位圓內(nèi)可以判斷因果系統(tǒng)是否穩(wěn)定,系統(tǒng)的穩(wěn)定性只與系統(tǒng)矩陣A有關(guān)。07系統(tǒng)的可控性和可觀性系統(tǒng)的可控性和可觀性狀態(tài)矢量的線性變換1在建立系統(tǒng)的狀態(tài)方程時,選擇不同的狀態(tài)變量,列出來的狀態(tài)方程是不相同的。但這些不同的狀態(tài)方程描述的是同一系統(tǒng),因此這些不同的狀態(tài)矢量之間存在線性變換關(guān)系。下面簡單討論一下狀態(tài)矢量的線性變換。對于連續(xù)系統(tǒng)的動態(tài)方程存在非奇異矩陣P(稱為變換矩陣),使?fàn)顟B(tài)矢量x(t)經(jīng)線性變換成為新狀態(tài)矢量g(t),即系統(tǒng)的可控性和可觀性狀態(tài)矢量的線性變換顯然有求導(dǎo),得用新狀態(tài)矢量描述的動態(tài)方程為系統(tǒng)的可控性和可觀性狀態(tài)矢量的線性變換新狀態(tài)矢量下的系數(shù)矩陣A,B,C,D與原來的A,B,C,D之間滿足下列關(guān)系:新狀態(tài)矢量下的系統(tǒng)矩陣A與原系統(tǒng)矩陣A為相似矩陣。系統(tǒng)的可控性和可觀性狀態(tài)矢量的線性變換1由于相似矩陣不改變矩陣的特征值,所以用于表征系統(tǒng)特性的特征值不因選擇不同的狀態(tài)矢量而改變。以上關(guān)于狀態(tài)變量的線性變換性質(zhì)是以連續(xù)系統(tǒng)為例說明,其方法和結(jié)論同樣也適應(yīng)于離散系統(tǒng)。系統(tǒng)的轉(zhuǎn)移函數(shù)描述了系統(tǒng)輸入和輸出之間的關(guān)系,與狀態(tài)矢量的選擇無關(guān)。因此,對同一系統(tǒng),選擇不同的狀態(tài)矢量進(jìn)行描述時,其系統(tǒng)轉(zhuǎn)移函數(shù)應(yīng)是相同的。當(dāng)系統(tǒng)的特征根均為單根時,常用的線性變換是將系統(tǒng)矩陣A變換為對角陣。系統(tǒng)的可控性和可觀性系統(tǒng)的可控制性2系統(tǒng)的可控制性簡稱可控性。其定義為:當(dāng)系統(tǒng)用狀態(tài)方程描述時,給定系統(tǒng)的任意初始狀態(tài),如果存在一個輸人矢量f(t)[或f(k)],它能在有限時間內(nèi)把系統(tǒng)的全部狀態(tài)引向狀態(tài)空間的原點(零狀態(tài)),則稱系統(tǒng)可控。如果只有部分狀態(tài)變量能做到這一點,則稱系統(tǒng)不完全可控。如果系統(tǒng)矩陣A是對角陣,則系統(tǒng)可控的充要條件是其相應(yīng)的控制矩陣B中沒有任何一行元素全為零。對于任意n階系統(tǒng),判斷其是否可控時,應(yīng)先將矩陣A、B組成可控性判別矩陣。系統(tǒng)的可控性和可觀性系統(tǒng)的可觀測性3系統(tǒng)的可觀測性(簡稱可觀性)就是根據(jù)系統(tǒng)的輸出量來確定系統(tǒng)的所有初始狀態(tài)??啥x為;當(dāng)系統(tǒng)用狀態(tài)方程描述時,在給定輸人(控制)后,若能在有限時間間隔內(nèi)根據(jù)系統(tǒng)輸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 長沙衛(wèi)生職業(yè)學(xué)院《管理溝通(英語)》2023-2024學(xué)年第一學(xué)期期末試卷
- 云南農(nóng)業(yè)大學(xué)《建筑工業(yè)化與裝配式結(jié)構(gòu)》2023-2024學(xué)年第一學(xué)期期末試卷
- 孩子里程碑的教育模板
- 保險業(yè)基礎(chǔ)講解模板
- 述職報告創(chuàng)新實踐
- 職業(yè)導(dǎo)論-房地產(chǎn)經(jīng)紀(jì)人《職業(yè)導(dǎo)論》點睛提分卷3
- 年終工作總結(jié)格式要求
- 二零二五版LNG液化天然氣裝運合同3篇
- 二零二五年度汽車后市場擔(dān)保合作協(xié)議合同范本集錦:維修保養(yǎng)服務(wù)2篇
- 二零二五版國際金融公司勞務(wù)派遣與風(fēng)險管理協(xié)議3篇
- 一個女兒的離婚協(xié)議書模板
- 2024年重點高中自主招生物理試題含答案
- 2020-2021學(xué)年-人教版八年級英語下冊-Unit-1-閱讀理解專題訓(xùn)練(含答案)
- 智慧農(nóng)業(yè)總體實施方案(2篇)
- 天然甜味劑的開發(fā)與應(yīng)用
- 2024年大學(xué)試題(宗教學(xué))-佛教文化筆試參考題庫含答案
- 農(nóng)村生活污水處理站運營維護(hù)方案
- 部編版小學(xué)語文四年級下冊二單元教材分析解讀主講課件
- 2023年譯林版英語五年級下冊Units-1-2單元測試卷-含答案
- 人教版三年級上冊脫式計算200題及答案
- 視覺傳達(dá)設(shè)計史平面設(shè)計的起源與發(fā)展課件
評論
0/150
提交評論