二元一次方程組的說課稿5篇_第1頁
二元一次方程組的說課稿5篇_第2頁
二元一次方程組的說課稿5篇_第3頁
二元一次方程組的說課稿5篇_第4頁
二元一次方程組的說課稿5篇_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第二元一次方程組的說課稿5篇二元一次方程組的說課稿5篇

教案能夠幫助教師及時發(fā)現(xiàn)和解決教學(xué)中的問題,不斷提高自身的教學(xué)水平和教學(xué)質(zhì)量。下面是小編為大家整理的二元一次方程組說課稿,如果大家喜歡可以分享給身邊的朋友。

二元一次方程組的說課稿精選篇1

【教學(xué)目標(biāo)】

知識目標(biāo):

①使學(xué)生初步理解二元一次方程與一次函數(shù)的關(guān)系。

②能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

能力目標(biāo):

通過學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組圖象解法,同時培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識和能力。

情感目標(biāo):

通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強新舊知識的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

重點要求:

1、二元一次方程和一次函數(shù)的關(guān)系。

2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

難點突破:

經(jīng)歷觀察、思考、操作、探究、交流等數(shù)學(xué)活動,培養(yǎng)學(xué)生抽象思維能力,并體會方程和函數(shù)之間的對應(yīng)關(guān)系,即數(shù)形結(jié)合思想。

【教學(xué)過程】

一、學(xué)前先思

師:請同學(xué)們思考,我們已經(jīng)學(xué)過的二元一次方程組的解法有哪些

生:代入消元法、加減消元法。

師:請你猜測還有其他的解法嗎

生:(小聲議論,有人提出圖象解法)

師:看來的同學(xué)似乎已經(jīng)提前做了預(yù)習(xí)工作,很好!那么對于課題“二元一次方程組的圖象解法”,你想提什么問題

生:二元一次方程組怎么會有圖象它的圖象應(yīng)該怎樣畫

生:二元一次方程組的圖象解法怎么做

師:同學(xué)們都問得很好!那你有喜歡的二元一次方程組嗎

生:(比較害羞)

師:看來大家比較害羞,那么請大家把各自喜歡的二元一次方程組留在心里。讓我們帶著同學(xué)們提出的問題從二元一次方程開始今天的學(xué)習(xí)。

二、探究導(dǎo)學(xué)

題目:

判斷上面幾組解中哪些是二元一次方程的解

生:和不是,其余各組均是方程的解。

師:請在學(xué)案上的直角坐標(biāo)系中先畫出一次函數(shù)的圖象,再標(biāo)出以上述的方程的解中為橫坐標(biāo),為縱坐標(biāo)的點,思考:二元一次方程的解與一次函數(shù)圖象上的點有什么關(guān)系

教學(xué)引入

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形?,F(xiàn)在請同學(xué)們拿出一個長方形紙條,按動畫所示進行折疊處理。

動畫演示:

場景一:正方形折疊演示

師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

[學(xué)生活動:各自測量。]

鼓勵學(xué)生將測量結(jié)果與鄰近同學(xué)進行比較,找出共同點。

講授新課

找一兩個學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

動畫演示:

場景二:正方形的性質(zhì)

師:這些性質(zhì)里那些是矩形的性質(zhì)

[學(xué)生活動:尋找矩形性質(zhì)。]

動畫演示:

場景三:矩形的性質(zhì)

師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

[學(xué)生活動;尋找菱形性質(zhì)。]

動畫演示:

場景四:菱形的性質(zhì)

師:這說明正方形具有矩形和菱形的全部性質(zhì)。

及時提出問題,引導(dǎo)學(xué)生進行思考。

師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義怎么樣給正方形下一個準(zhǔn)確的定義

[學(xué)生活動:積極思考,有同學(xué)做躍躍欲試狀。]

師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:

“有一組鄰邊相等的矩形叫做正方形?!?/p>

“有一個角是直角的菱形叫做正方形?!?/p>

“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?/p>

[學(xué)生活動:討論這三個定義正確不正確三個定義之間有什么共同和不同的地方這出教材中采用的是第三種定義方式。]

師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

生:我發(fā)現(xiàn)二元一次方程的解就是相對應(yīng)的一次函數(shù)圖象上的點的坐標(biāo)。

師:很好!反過來,請問:一次函數(shù)圖象上的點的坐標(biāo)是否是與其相對應(yīng)的二元一次方程的解呢

生:是的。并且二元一次方程的解中的、的值就是相對應(yīng)的一次函數(shù)圖象上點的橫、縱坐標(biāo)的值。

三、鞏固基礎(chǔ)

師:非常好!那下面的題目你會解嗎

(學(xué)生讀題)題目:方程有一個解是,則一次函數(shù)的圖象上必有一個點的坐標(biāo)為______

生:(2,1)

(學(xué)生讀題)題目:一次函數(shù)的圖象上有一個點的坐標(biāo)為(3,2),則方程必有一個解是_________

生:

師:你能把下面的二元一次方程轉(zhuǎn)化成相應(yīng)的一次函數(shù)嗎

(學(xué)生讀題)把下列二元一次方程轉(zhuǎn)化成的形式:

(1)(2)

生:第(1)題利用移項,得到,所以

第(2)題利用移項,得到,兩邊同時除以2,所以

四、感悟提升

師:如果將和組成二元一次方程組,你能用代入消元法或者加減消元法求出它的解嗎

生:能,我算出

師:很好!你能在同一直角坐標(biāo)系中畫出一次函數(shù)與的圖象嗎

生:可以。(動手在學(xué)案上畫圖)

師:觀察兩條直線的位置關(guān)系,你有什么發(fā)現(xiàn)

生:我發(fā)現(xiàn)這兩條直線相交,并且交點坐標(biāo)是(2,1)。

師:通過以上活動,你能得到什么結(jié)論

生:我發(fā)現(xiàn)剛剛求出的二元一次方程的解剛好就是一次函數(shù)與的圖象的交點坐標(biāo)(2,1)。

師:很好!你能抽象成一般的結(jié)論嗎

生:如果兩個一次函數(shù)的圖象有一個交點,那么交點的坐標(biāo)就是相應(yīng)的二元一次方程組的解。

師:非常好!用一次函數(shù)的圖象解二元一次方程組的方法就是我們今天要學(xué)習(xí)的二元一次方程組的圖象解法。

師:你能學(xué)以致用嗎

y=2x-5

y=-x+1

題目:如圖,方程組的解是___________

生:根據(jù)圖象可知:一次函數(shù)與的圖象的交點是(2,-1),因此,方程組的解是。

師:回答得真棒!

五、例題教學(xué)

例題:利用一次函數(shù)的圖象解二元一次方程組。

師:請大家在學(xué)案的做中感悟欄內(nèi)上大膽地寫出解題過程。

生:(投影展示解題過程)略。

師:很好!讓我們一起來看一下老師準(zhǔn)備的解題過程(略)

師:你能就此歸納出二元一次方程組的圖象解法的一般步驟嗎

生:先將二元一次方程組中的方程化成相應(yīng)的一次函數(shù),然后畫出一次函數(shù)的圖象,找出它們的交點坐標(biāo),就可以得出二元一次方程組的解。

師:非常好!我們可以用12個字的口訣來記住剛才同學(xué)的步驟:變函數(shù),畫圖象,找交點,寫結(jié)論。

師:接下來請同學(xué)們在學(xué)案上的鞏固強化欄內(nèi)利用圖象解法求出你心里埋你所喜歡的二元一次方程組的解。

生:(各自動手操作,教師展示學(xué)生求解過程)

師:觀察你作的圖象,你有什么發(fā)現(xiàn)嗎

生:我發(fā)現(xiàn)有些一次函數(shù)圖象的交點比較容易看出來,而有些一次函數(shù)圖象的交點不容易看出來是多少。

師:是的,所以在這里老師需要說明的是我們用圖象法求解一元二次方程組的解得到的是近似解。

師:請大家比較一下,二元一次方程組的圖象解法和我們以前學(xué)過的代數(shù)解法——代入消元法、加減消元法相比,那種方法簡單一些

生:代入消元法、加減消元法簡單。

師:二元一次方程組的圖象解法既不比代數(shù)解法簡單,且得到的解又是近似的,為什么我們還要學(xué)習(xí)這種解法呢原因有以下幾個方面:一是要讓我們學(xué)會從多種角度思考問題,用多種方法解決問題;二是說明了“數(shù)”與“形”存在著這樣或那樣的密切聯(lián)系,有時我們要從“數(shù)”的角度去考慮“形”的問題,有時我們又要從“形”的角度去考慮“數(shù)”的問題,這里是從“形”的角度來考慮“數(shù)”的問題;三是為了以后進一步學(xué)習(xí)的需要。

師:看來大家都很愛動腦筋,那么接下來我們將例題加以變化。

六、例題變式

題目:用圖象法求解二元一次方程組時,兩條直線相交于點(2,-4),求一次函數(shù)的關(guān)系式。

師:請一位同學(xué)來分析一下。

生:由兩條直線的交點坐標(biāo)(2,-4)可知,二元一次方程組的解就是,把代入到二元一次方程組中,可得:,解得,所以一次函數(shù)的關(guān)系式為。

師:非常好!

七、感悟歸納

師:再請同學(xué)們思考,如果二元一次方程組轉(zhuǎn)化成的一次函數(shù)的圖象沒有交點,那么所對應(yīng)的二元一次方程組的解是什么呢

生:我想如果二元一次方程組轉(zhuǎn)化成的一次函數(shù)的圖象沒有交點,那么所對應(yīng)的二元一次方程組應(yīng)該無解。

八、拓寬提升

題目:不畫函數(shù)的圖象,判斷下列兩條直線是否有交點它們的位置關(guān)系如何每組一次函數(shù)中的有什么關(guān)系

(1)與;

(2)與

師:你會怎樣分析這道題

生:我們只要求解一下由這兩個一次函數(shù)所組成的二元一次方程組的解的情況就可以判斷兩條直線的位置關(guān)系。如果方程組有解,那么相應(yīng)的兩條直線就是相交,如果方程組無解,那么相應(yīng)的兩條直線就是平行的位置關(guān)系。

師:很好!抽象成一般結(jié)論怎樣敘述

生:對于直線與,當(dāng)時,兩直線平行;當(dāng)時,兩直線相交。

九、例題再探

題目:利用一次函數(shù)的圖象解二元一次方程組

問:(1)這兩條直線有什么特殊的位置關(guān)系

(2)這兩個一次函數(shù)的有何特殊的關(guān)系

(3)由此,你能得出怎樣的結(jié)論

師:哪位同學(xué)來嘗試一下

生:(1)這兩條直線是垂直的位置關(guān)系;

(2)這兩個一次函數(shù)的相乘的結(jié)果等于-1;

(3)仿照剛才的結(jié)論,我得出的結(jié)論是:對于直線與,當(dāng)時,兩直線垂直。

師:太棒了!那下面的這一題你會做嗎

題目:已知直線和直線

(1)若,求的值;

(2)若,求垂足的坐標(biāo)。

師:誰來試一下

生:由前面的結(jié)論我們可以得出,如果,則,解得:;如果,則,解得,將代入二元一次方程組,可得,求出方程組的解就可以得出垂足的坐標(biāo)。

十、學(xué)會創(chuàng)新

師:請你根據(jù)這節(jié)課中的例題(或習(xí)題)在學(xué)案中編(或出)一道題??凑l出的題新穎、精妙!

生:(暢所欲言,踴躍嘗試)

十一、小結(jié)與思考

師:(1)這節(jié)課你學(xué)到了什么

(2)你還存在哪些疑問

生:(分組討論,代表發(fā)言總結(jié))

【設(shè)計說明】

本節(jié)課的兩個知識點:二元一次方程和一次函數(shù)的關(guān)系,二元一次方程組的圖象解法對于學(xué)生來說都是難點。就本節(jié)課而言,前者較為重要,后者難度較大。確定本節(jié)課的重點為前者,是因為學(xué)生必須首先理解二元一次方程和一次函數(shù)在數(shù)與形兩方面的聯(lián)系,在此基礎(chǔ)上才能解決好后面的難點。在重難點的處理上,為了解決學(xué)生對重點的理解,用一組二元一次方程組串起一節(jié)課,加以變式,既使得學(xué)生理解了重點內(nèi)容,又為后面的難點突破留下了一定的時間和空間。本節(jié)課的教學(xué),主要以問題為線索,注重引導(dǎo)學(xué)生仔細(xì)觀察、獨立思考、認(rèn)真操作、分組討論、合作交流、師生互動,這對本節(jié)課的重難點的突破還是有效的,同時也體現(xiàn)了新課改提倡的學(xué)生的“自主、合作、探究”的學(xué)習(xí)方式的培養(yǎng)。另外,對利用二元一次方程組的解判斷直線的位置關(guān)系作為補充,滲透數(shù)形結(jié)合思想,也對教學(xué)目標(biāo)中的情感態(tài)度和價值觀的又一方面體現(xiàn)。

【教學(xué)反思】

這節(jié)課以“回顧、先思”為先導(dǎo),以“操作、思考”為手段,以“數(shù)、形結(jié)合”為要求,以“引導(dǎo)探究,變式拓寬”為主線,從舊知引入,自然過渡、不落痕跡。首先提出學(xué)生所熟知的二元一次方程并討論其解的情況,為后面探究二元一次方程與一次函數(shù)之間的關(guān)系作了必要的準(zhǔn)備,結(jié)構(gòu)安排自然、緊湊。在操作中,提出問題、深化認(rèn)識。一切知識來自于實踐。只有實踐,才能發(fā)現(xiàn)問題、提出問題;只有實踐,才能把握知識、深化認(rèn)識。先讓學(xué)生畫出一次函數(shù)的圖象,在畫圖的過程中發(fā)現(xiàn):“以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖象上?!痹趹?yīng)用結(jié)論探索一元二次方程組的圖象解法時,也是在操作中來發(fā)現(xiàn)問題。這樣,就給了學(xué)生充分體驗、自主探索知識的機會;使他們在自主探索、合作交流中找到了快樂,深化了認(rèn)識。以能力培養(yǎng)為核心,引導(dǎo)探究為主線,數(shù)、形結(jié)合為要求。能力培養(yǎng),特別是創(chuàng)新能力的培養(yǎng)是新課程關(guān)注的焦點。能力培養(yǎng)是以自主探究為平臺。“自主”不是一盤散沙,“探究”不是漫無邊際。要提高探究的質(zhì)量和效益必須在教師的引導(dǎo)下進行。為達到這一目的,教案中設(shè)計了“探究導(dǎo)學(xué)”、“例題變式”、“例題再探”、“學(xué)會創(chuàng)新”和“拓展提升”。新課程理念指出:教師是課程的研究者和開發(fā)者。這就要求我們:在新課程標(biāo)準(zhǔn)的指導(dǎo)下,認(rèn)真研究教材,體會教材的編寫意圖。在此基礎(chǔ)上,設(shè)計出既體現(xiàn)課程精神,又適合本班學(xué)生實際的教學(xué)案例。本節(jié)課前半部分時間有些慢,后半部分例題再探和學(xué)會創(chuàng)新時間不夠。建議有針對性的學(xué)生板演多一點,進一步加強雙基的落實。

【同伴點評】

本節(jié)課教師創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生觀察、思考、操作、探究、合作交流。問題的設(shè)計層層遞進,通過問題的逐一解決,師生最終形成共識,達到了揭示二元一次方程組與一次函數(shù)的圖象關(guān)系的目的。(李曉紅)

在例題教學(xué)及學(xué)生動手嘗試時,教師在學(xué)生大膽嘗試之后給出解題過程,強調(diào)了解題的規(guī)范性,有利于培養(yǎng)學(xué)生的嚴(yán)謹(jǐn)認(rèn)真的學(xué)習(xí)態(tài)度。同時強調(diào)了由于二元一次方程組的圖象解法得到的解往往是近似的,因此必須檢驗。教師對學(xué)習(xí)二元一次方程組的圖象解法的必要性的解釋,是非常有必要的,這一解釋解決了學(xué)生的疑惑,同時也滲透了數(shù)形結(jié)合思想,也是教學(xué)目標(biāo)中的情感態(tài)度和價值觀的體現(xiàn)。對于這一解釋,相當(dāng)一部分教師在這一節(jié)課中并沒有很好解決。這一處理方法值得他人借鑒。(丁葉謙)

本節(jié)課老師準(zhǔn)備充分,教學(xué)環(huán)節(jié)緊緊相扣。授課老師充分體現(xiàn)了課題:“先思后導(dǎo),變式拓寬教學(xué)設(shè)計”的精神,不斷地創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生學(xué)習(xí)新知,在探索二元一次方程組的圖象解法時給了學(xué)生充分體驗、自主探索知識的機會,使他們在自主探索、合作交流中找到了快樂,深化了認(rèn)識。同時對例題連續(xù)的再利用,不斷變化,讓學(xué)生在變式中不斷豐富對二元一次方程組圖象解法的認(rèn)識,充分認(rèn)識二元一次方程組圖象解法的實用性,學(xué)會創(chuàng)新環(huán)節(jié)的設(shè)計更是極大地調(diào)動學(xué)生學(xué)習(xí)的積極性。教師教態(tài)親切,語言生動,娓娓道來。

二元一次方程組的說課稿精選篇2

教學(xué)目標(biāo)

1.會用加減法解一般地二元一次方程組。

2.進一步理解解方程組的消元思想,滲透轉(zhuǎn)化思想。

3.增強克服困難的勇力,提高學(xué)習(xí)興趣。

教學(xué)重點

把方程組變形后用加減法消元。

教學(xué)難點

根據(jù)方程組特點對方程組變形。

教學(xué)過程

一、復(fù)習(xí)引入

用加減消元法解方程組。

二、新課。

1.思考如何解方程組(用加減法)。

先觀察方程組中每個方程x的系數(shù),y的系數(shù),是否有一個相等?;蚧橄喾磾?shù)?

能否通過變形化成某個未知數(shù)的系數(shù)相等,或互為相反數(shù)?怎樣變形。

學(xué)生解方程組。

2.例1.解方程組

思考:能否使兩個方程中x(或y)的系數(shù)相等(或互為相反數(shù))呢?

學(xué)生討論,小組合作解方程組。

提問:用加減消元法解方程組有哪些基本步驟?

三、練習(xí)。

1.P40練習(xí)題(3)、(5)、(6)。

2.分別用加減法,代入法解方程組。

四、小結(jié)。

解二元一次方程組的加減法,代入法有何異同?

二元一次方程組的說課稿精選篇3

一、教材分析

1.教材的地位和作用

本節(jié)課是華東師大版七年級數(shù)學(xué)下冊第七章《二元一次方程組》中第二節(jié)的第四課時,它是在學(xué)習(xí)了代入消元法和加減消元法的基礎(chǔ)上進行學(xué)習(xí)的。能夠靈活熟練地掌握加減消元法,在解方程組時會更簡便準(zhǔn)確,也是為以后學(xué)習(xí)用待定系數(shù)法求一次函數(shù)、二次函數(shù)關(guān)系式打下了基礎(chǔ),特別是在聯(lián)系實際,應(yīng)用方程組解決問題方面,它會起到事半功倍的效果。

2.教學(xué)目標(biāo)

(1)知識目標(biāo):進一步了解加減消元法,并能夠熟練地運用這種方法解較為復(fù)雜的二元一次方程組。

(2)能力目標(biāo):經(jīng)歷探索用“加減消元法”解二元一次方程組的過程,培養(yǎng)學(xué)生分析問題、解決問題的能力和創(chuàng)新意識。

(3)情感目標(biāo):在自由探索與合作交流的過程中,不斷讓學(xué)生體驗獲得成功的喜悅,培養(yǎng)學(xué)生的合作精神,激發(fā)學(xué)生的學(xué)習(xí)熱情,增強學(xué)生的自信心。

3.教學(xué)重點難點

教學(xué)重點:利用加減法解二元一次方程組。

教學(xué)難點:二元一次方程組加減消元法的靈活應(yīng)用。

4.教學(xué)準(zhǔn)備:多媒體、課件。

二、學(xué)情分析

我所任教的初一(2)班學(xué)生基礎(chǔ)比較好,他們已經(jīng)具備了一定的探索能力,也初步養(yǎng)成了合作交流的習(xí)慣。大多數(shù)學(xué)生的好勝心比較強,性格比較活潑,他們希望有展現(xiàn)自我才華的機會,但是對于七年級的鄉(xiāng)鎮(zhèn)中學(xué)的學(xué)生來說,他們獨立分析問題的能力和靈活應(yīng)用的能力還有待提高,很多時候還需要教師的點撥和引導(dǎo)。因此,我遵循學(xué)生的認(rèn)識規(guī)律,由淺入深,適時引導(dǎo),調(diào)動學(xué)生的積極性,并適當(dāng)?shù)亟o予表揚和鼓勵,借此增強他們的自信心。

三、教法與學(xué)法分析

說教法:啟發(fā)引導(dǎo)法,任務(wù)驅(qū)動法,情境教學(xué)法,演示法。

說學(xué)法:合作探究法,觀察比較法。

四.教學(xué)設(shè)計

(一)復(fù)習(xí)舊知

1、解二元一次方程組的基本思想是什么?(消元)

2、前面我們學(xué)過了哪些消元方法?(“單身”代入法、“朋友”加減法)

下列兩題可以用什么方法來求解?

2x3y=16①

X-y=3②3

學(xué)生:觀察、思考、討論和交流,然后口述解題方法。

教師:肯定、鼓勵、板書。

[設(shè)計意圖:通過復(fù)習(xí),讓學(xué)生鞏固了相關(guān)的舊知識,同時也為本節(jié)課做了鋪墊]

(二)探究新知

1、情境導(dǎo)入

師:我們用代入法來解題第一步是找“單身”,用加減法來解題第一步是找“朋友”,再用同減異加的法則進行解答,那么我們一起來看一下這道題目:

問:這題能否用“單身”代入法或“朋友”加減法來求解?為什么?導(dǎo)入課題,板書課題。[設(shè)計意圖:利用富有挑戰(zhàn)性的問題,激發(fā)學(xué)生的好奇心和求知欲,可引發(fā)學(xué)生對問題的思考,并促進學(xué)生運用已有的知識去發(fā)現(xiàn)和獲取新的知識]

2、合作探究

(讓學(xué)生分組討論交流,主動探索出解法,教師巡視指導(dǎo)并肯定和鼓勵他們。)

總結(jié)解題方法:如果一個方程組中x或y的系

數(shù)不相同時,也就是說它們不是“朋友”時,先要想辦法把“陌生人”變成“朋友”。

方法一:將方程①變形后消去x。

方法二:將方程②變形后消去y。

讓學(xué)生嘗試著寫出解題過程,請兩位同學(xué)上臺展示結(jié)果,集體訂正。請做對的同學(xué)舉手,全班同學(xué)都為自己鼓鼓掌,做對的表示給自己一次祝賀,暫時還沒做對的表示給自己一次鼓勵。[設(shè)計意圖:讓學(xué)生探索這道過渡性的題目,是遵循了學(xué)生的認(rèn)識規(guī)律,由淺入深,為學(xué)習(xí)下面這道例題做好準(zhǔn)備,同時通過變“陌生人”為“朋友”這一設(shè)想過程,也培養(yǎng)了學(xué)生的創(chuàng)新意識。]

3、例題探索例5、解方程組:3x-4y=10①

5x6y=42②

師:這道題的x與y的系數(shù)有何特點?如何變成“朋友”?

(讓學(xué)生思考、分組討論、交流,教師引導(dǎo)并板書解題過程。)

[設(shè)計意圖:讓學(xué)生通過探討,逐步發(fā)現(xiàn)可以用加減消元法去解較為復(fù)雜的二元一次方程組,也讓他們再次體會了消元化歸的數(shù)學(xué)思想,同時也培養(yǎng)了學(xué)生分析問題和解決問題的能力。在整個探討的過程中也增強了學(xué)生的信心,學(xué)生有了發(fā)現(xiàn)的樂趣和成功的喜悅后,會產(chǎn)生一種想表現(xiàn)自己的欲望。]

4、試一試

學(xué)生完成課本第30頁的試一試,讓學(xué)生用本節(jié)課的加減消元法和前面例2的代入消元法進行比較,看一看哪種方法更簡便?

(小組之間互相交流,寫出解答過程,并請一些同學(xué)談?wù)勛约旱目捶?,教師展示兩種解題方法讓學(xué)生們進行比較。)

[設(shè)計意圖:通過對比兩種方法,使學(xué)生更清晰地掌握知識,當(dāng)學(xué)生發(fā)現(xiàn)本節(jié)課的方法比例2的方法更簡便時,學(xué)生會產(chǎn)生一種用本節(jié)課的知識去解題的沖動。]

(三)反饋矯正

解方程組:

(給學(xué)生提供展現(xiàn)自我才華的機會,以前后兩桌為一個小組進行討論交流,此時可輕聲播放一首鋼琴曲,為學(xué)生創(chuàng)造一種輕松和諧的學(xué)習(xí)氛圍)

讓兩個同學(xué)上臺解題,教師巡視,并每一個組選兩名代表檢查本組同學(xué)的完成情況和及時幫助有困難的同學(xué),待全班同學(xué)完成后,讓臺上這兩位同學(xué)試著當(dāng)一下小老師,為全班同學(xué)講解自己所做的題目,教師為評委,進行點評并總結(jié),全班同學(xué)為他們鼓掌。

[設(shè)計意圖:由于學(xué)生人數(shù)較多,教師不能兼顧每個學(xué)生,所以讓學(xué)生自做自講,培養(yǎng)了學(xué)生綜合能力的同時,也活躍了課堂氣氛。選代表巡視并幫助有困難的同學(xué),會讓學(xué)生感受到老師對他們的重視,這樣就能讓他們主動參與到課堂中來。同時也培養(yǎng)了學(xué)生的合作精神和激發(fā)了學(xué)生的學(xué)習(xí)熱情。]

(四)課堂小結(jié):學(xué)完這節(jié)課,大家有什么收獲?請同學(xué)們談?wù)剬@節(jié)課的體會。

[設(shè)計意圖:加深對本節(jié)知識的理解和記憶,培養(yǎng)學(xué)生歸納、概括能力。]

(五)布置作業(yè):

必做題:課本第31頁的練習(xí)。

選做題:

(2)

[設(shè)計意圖:進一步鞏固本節(jié)課知識的同時,也給學(xué)生留下思考的余地和空間,學(xué)生是帶著問題走進課堂,現(xiàn)在又帶著新的問題走出課堂。]

五、板書設(shè)計:二元一次方程組的解法(四)

找“朋友”——變“陌生人”為“朋友”——同減異加

例題分析習(xí)題分析

[設(shè)計意圖:為了更好地突出本節(jié)課的教學(xué)重點和讓學(xué)生更明確本節(jié)課的教學(xué)目標(biāo)。]

二元一次方程組的說課稿精選篇4

教學(xué)目標(biāo):通過學(xué)生積極思考,互相討論,經(jīng)歷探索事物之間的數(shù)量關(guān)系,形成方程模型,解方程和運用方程解決實際問題的過程進一步體會方程是刻劃現(xiàn)實世界的有效數(shù)學(xué)模型

重點:讓學(xué)生實踐與探索,運用二元一次方程解決有關(guān)配套與設(shè)計的應(yīng)用題

難點:尋找等量關(guān)系

教學(xué)過程:

看一看:課本99頁探究2

問題:1“甲、乙兩種作物的單位面積產(chǎn)量比是1:1、5”是什么意思?

2、“甲、乙兩種作物的總產(chǎn)量比為3:4”是什么意思?

3、本題中有哪些等量關(guān)系?

提示:若甲種作物單位產(chǎn)量是a,那么乙種作物單位產(chǎn)量是多少?

思考:這塊地還可以怎樣分?

練一練

一、某農(nóng)場300名職工耕種51公頃土地,計劃種植水稻、棉花、和蔬菜,已知種植植物每公頃所需的勞動力人數(shù)及投入的設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論