版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
新高考數(shù)學(xué)模擬練習(xí)卷一、單選題1.已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.若SKIPIF1<0(i為虛數(shù)單位),則實(shí)數(shù)a的值為(
)A.-3 B.-1 C.1 D.33.經(jīng)過圓錐的軸的截面是面積為2的等腰直角三角形,則圓錐的側(cè)面積是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.已知函數(shù)SKIPIF1<0的圖象如圖所示,則該函數(shù)的解析式可能是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大SKIPIF1<0武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人SKIPIF1<0在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對(duì)其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測(cè),若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測(cè)呈陽性的概率均為p(0<p<1)且相互獨(dú)立,該家庭至少檢測(cè)了5個(gè)人才能確定為“感染高危戶”的概率為f(p),當(dāng)p=p0時(shí),f(p)最大,則p0=(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.0 C.1 D.SKIPIF1<07.已知SKIPIF1<0是函數(shù)SKIPIF1<0(其中SKIPIF1<0)圖象上的兩個(gè)動(dòng)點(diǎn),點(diǎn)SKIPIF1<0,若SKIPIF1<0的最小值為0,則函數(shù)SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.有6個(gè)相同的球,分別標(biāo)有數(shù)字1,2,3,4,5,6,從中有放回的隨機(jī)取兩次,每次取1個(gè)球,甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是2”,丙表示事件“兩次取出的球的數(shù)字之和是8”,丁表示事件“兩次取出的球的數(shù)字之和是7”,則(
)A.甲與丙相互獨(dú)立 B.甲與丁相互獨(dú)立C.乙與丙相互獨(dú)立 D.丙與丁相互獨(dú)立二、多選題9.甲、乙兩名同學(xué)在本學(xué)期的六次考試成績(jī)統(tǒng)計(jì)如圖,甲、乙兩組數(shù)據(jù)的平均值分別為SKIPIF1<0、SKIPIF1<0,則(
)A.每次考試甲的成績(jī)都比乙的成績(jī)高B.甲的成績(jī)比乙穩(wěn)定C.SKIPIF1<0一定大于SKIPIF1<0D.甲的成績(jī)的極差大于乙的成績(jī)的極差10.下列各式中,與SKIPIF1<0相等的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<011.在平面直角坐標(biāo)系中,三點(diǎn)A(-1,0),B(1,0),C(0,7),動(dòng)點(diǎn)P滿足PA=SKIPIF1<0PB,則以下結(jié)論正確的是(
)A.點(diǎn)P的軌跡方程為(x-3)2+y2=8 B.△PAB面積最大時(shí),PA=2SKIPIF1<0C.∠PAB最大時(shí),PA=SKIPIF1<0 D.P到直線AC距離最小值為SKIPIF1<012.如圖,點(diǎn)SKIPIF1<0是正四面體SKIPIF1<0底面SKIPIF1<0的中心,過點(diǎn)SKIPIF1<0且平行于平面SKIPIF1<0的直線分別交SKIPIF1<0,SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是棱SKIPIF1<0上的點(diǎn),平面SKIPIF1<0與棱SKIPIF1<0的延長線相交于點(diǎn)SKIPIF1<0,與棱SKIPIF1<0的延長線相交于點(diǎn)SKIPIF1<0,則(
)A.若SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0B.存在點(diǎn)SKIPIF1<0與直線SKIPIF1<0,使SKIPIF1<0C.存在點(diǎn)SKIPIF1<0與直線SKIPIF1<0,使SKIPIF1<0平面SKIPIF1<0D.SKIPIF1<0三、填空題13.已知偶函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),則不等式SKIPIF1<0的解集是________.14.拋物線SKIPIF1<0的焦點(diǎn)坐標(biāo)是________15.已知f(x)=2x3﹣6x2+m(m為常數(shù)),在[﹣2,2]上有最大值3,那么此函數(shù)在[﹣2,2]上的最小值為.16.已知等差數(shù)列{an}的前n項(xiàng)和Sn=3n2+an,等比數(shù)列{bn}的前n項(xiàng)和Tn=2n﹣a,則a=__,數(shù)列{SKIPIF1<0}的前9項(xiàng)和為__.四、解答題17.已知:SKIPIF1<0,SKIPIF1<0(SKIPIF1<0)是方程SKIPIF1<0的兩根,且SKIPIF1<0,SKIPIF1<0(SKIPIF1<0SKIPIF1<0N*).(1)求SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的值;(2)設(shè)SKIPIF1<0,求證:SKIPIF1<0;(3)求證:對(duì)SKIPIF1<0SKIPIF1<0SKIPIF1<0N*有SKIPIF1<0.18.2021年5月12日,2022北京冬奧會(huì)和冬殘奧會(huì)吉祥物冰墩墩、雪容融亮相上海展覽中心.為了慶祝吉祥物在上海的亮相,某商場(chǎng)舉辦了一場(chǎng)贏取吉祥物掛件的“雙人對(duì)戰(zhàn)”游戲,游戲規(guī)則如下:參與對(duì)戰(zhàn)的雙方每次從裝有3個(gè)白球和2個(gè)黑球(這5個(gè)球的大小、質(zhì)量均相同,僅顏色不同)的盒子中輪流不放回地摸出1球,摸到最后1個(gè)黑球或能判斷出哪一方獲得最后1個(gè)黑球時(shí)游戲結(jié)束,得到最后1個(gè)黑球的一方獲勝.設(shè)游戲結(jié)束時(shí)對(duì)戰(zhàn)雙方摸球的總次數(shù)為X.(1)求隨機(jī)變量X的概率分布;(2)求先摸球的一方獲勝的概率,并判斷這場(chǎng)游戲是否公平.19.已知SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0三個(gè)內(nèi)角SKIPIF1<0的對(duì)邊.(1)若SKIPIF1<0面積為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的值;(2)若SKIPIF1<0,試判斷SKIPIF1<0的形狀,證明你的結(jié)論.20.如圖,在三棱錐SKIPIF1<0中,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0;(2)若SKIPIF1<0是邊長為1的等邊三角形,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,SKIPIF1<0,且二面角SKIPIF1<0的大小為SKIPIF1<0,求三棱錐SKIPIF1<0的體積.21.如圖,直線SKIPIF1<0與直線SKIPIF1<0之間的陰影區(qū)域(不含邊界)記為SKIPIF1<0,其左半部分記為SKIPIF1<0,右半部分記為SKIPIF1<0.(1)分別用不等式組表示SKIPIF1<0和SKIPIF1<0;(2)若區(qū)域SKIPIF1<0中的動(dòng)點(diǎn)SKIPIF1<0到SKIPIF1<0的距離之積等于SKIPIF1<0,求點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程;(3)設(shè)不過原點(diǎn)SKIPIF1<0的直線SKIPIF1<0與(2)中的曲線SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),且與SKIPIF1<0分別交于SKIPIF1<0兩點(diǎn).求證SKIPIF1<0的重心與SKIPIF1<0的重心重合.22.已知SKIPIF1<0為函數(shù)SKIPIF1<0的一個(gè)極值點(diǎn).(1)求實(shí)數(shù)SKIPIF1<0的值,并討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若方程SKIPIF1<0有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)SKIPIF1<0的值.新高考數(shù)學(xué)模擬練習(xí)卷一、單選題1.已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】先化簡(jiǎn)兩集合,再求交集,即可得出結(jié)果.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0;所以SKIPIF1<0.故選:D.【點(diǎn)睛】本題主要考查求集合的交集,屬于基礎(chǔ)題型.2.若SKIPIF1<0(i為虛數(shù)單位),則實(shí)數(shù)a的值為(
)A.-3 B.-1 C.1 D.3【答案】A【分析】由已知可得SKIPIF1<0,根據(jù)復(fù)數(shù)乘法運(yùn)算法則,和復(fù)數(shù)相等的充要條件,即可求解.【詳解】SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0.故選:A.3.經(jīng)過圓錐的軸的截面是面積為2的等腰直角三角形,則圓錐的側(cè)面積是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由軸截面是面積為2的等腰直角三角形,得到底面半徑及母線長即可得到該圓錐的側(cè)面積.【詳解】設(shè)圓錐的底面半徑為SKIPIF1<0,母線長為SKIPIF1<0,則SKIPIF1<0,由題可知SKIPIF1<0,∴SKIPIF1<0,側(cè)面積為SKIPIF1<0,故選:C.4.已知函數(shù)SKIPIF1<0的圖象如圖所示,則該函數(shù)的解析式可能是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)函數(shù)的圖象結(jié)合函數(shù)的定義域,復(fù)合函數(shù)的奇偶性,利用排除法,即可得到結(jié)果.【詳解】由圖象可知函數(shù)SKIPIF1<0是奇函數(shù),函數(shù)SKIPIF1<0和SKIPIF1<0由復(fù)合函數(shù)的奇偶性可知,這兩個(gè)函數(shù)為偶函數(shù),故排除A,C;對(duì)于函數(shù)SKIPIF1<0,由于SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0無意義,所以函數(shù)SKIPIF1<0不經(jīng)過原點(diǎn),故B錯(cuò)誤;故D滿足題意.故選:D.5.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大SKIPIF1<0武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人SKIPIF1<0在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對(duì)其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測(cè),若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測(cè)呈陽性的概率均為p(0<p<1)且相互獨(dú)立,該家庭至少檢測(cè)了5個(gè)人才能確定為“感染高危戶”的概率為f(p),當(dāng)p=p0時(shí),f(p)最大,則p0=(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】解設(shè)事件A為:檢測(cè)了5人確定為“感染高危戶”,設(shè)事件B為:檢測(cè)了6人確定為“感染高危戶”,則SKIPIF1<0,再利用基本不等式法求解.【詳解】解:設(shè)事件A為:檢測(cè)了5人確定為“感染高危戶”,設(shè)事件B為:檢測(cè)了6人確定為“感染高危戶”,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,即SKIPIF1<0,故選:A6.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.0 C.1 D.SKIPIF1<0【答案】D【分析】SKIPIF1<0利用平方關(guān)系和正弦的二倍角公式弦化切,由SKIPIF1<0求出SKIPIF1<0代入可得答案.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:D.7.已知SKIPIF1<0是函數(shù)SKIPIF1<0(其中SKIPIF1<0)圖象上的兩個(gè)動(dòng)點(diǎn),點(diǎn)SKIPIF1<0,若SKIPIF1<0的最小值為0,則函數(shù)SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由指數(shù)函數(shù)單調(diào)性可確定SKIPIF1<0,當(dāng)SKIPIF1<0最小時(shí),可確定SKIPIF1<0分別為過SKIPIF1<0作SKIPIF1<0兩段圖象的切線,利用過某一點(diǎn)曲線切線的求解方法可構(gòu)造方程組求得SKIPIF1<0,進(jìn)而得到所求最小值.【詳解】由解析式可知:SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0.設(shè)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上的圖象相切,設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,設(shè)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上的圖象相切,設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,同理可求得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0圖象上的點(diǎn),且SKIPIF1<0的最小值為SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0.故選:SKIPIF1<0.【點(diǎn)睛】本題考查函數(shù)最值的求解問題,涉及到導(dǎo)數(shù)幾何意義的應(yīng)用;關(guān)鍵是能夠通過平面向量數(shù)量積的定義將問題轉(zhuǎn)化為過某一點(diǎn)的曲線切線方程的求解問題,充分體現(xiàn)了轉(zhuǎn)化與化歸思想在考試中的應(yīng)用.8.有6個(gè)相同的球,分別標(biāo)有數(shù)字1,2,3,4,5,6,從中有放回的隨機(jī)取兩次,每次取1個(gè)球,甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是2”,丙表示事件“兩次取出的球的數(shù)字之和是8”,丁表示事件“兩次取出的球的數(shù)字之和是7”,則(
)A.甲與丙相互獨(dú)立 B.甲與丁相互獨(dú)立C.乙與丙相互獨(dú)立 D.丙與丁相互獨(dú)立【答案】B【分析】根據(jù)獨(dú)立事件概率關(guān)系逐一判斷【詳解】SKIPIF1<0,SKIPIF1<0SKIPIF1<0故選:B【點(diǎn)睛】判斷事件SKIPIF1<0是否獨(dú)立,先計(jì)算對(duì)應(yīng)概率,再判斷SKIPIF1<0是否成立二、多選題9.甲、乙兩名同學(xué)在本學(xué)期的六次考試成績(jī)統(tǒng)計(jì)如圖,甲、乙兩組數(shù)據(jù)的平均值分別為SKIPIF1<0、SKIPIF1<0,則(
)A.每次考試甲的成績(jī)都比乙的成績(jī)高B.甲的成績(jī)比乙穩(wěn)定C.SKIPIF1<0一定大于SKIPIF1<0D.甲的成績(jī)的極差大于乙的成績(jī)的極差【答案】BC【分析】利用折線圖的性質(zhì)直接求解即可.【詳解】對(duì)于A選項(xiàng),第二次月考,乙的成績(jī)比甲的成績(jī)要高,A選項(xiàng)錯(cuò)誤;對(duì)于B選項(xiàng),甲組數(shù)據(jù)比乙組數(shù)據(jù)的波動(dòng)幅度要小,甲的成績(jī)比乙穩(wěn)定,B選項(xiàng)正確;對(duì)于C選項(xiàng),根據(jù)圖象可估計(jì)出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0一定大于SKIPIF1<0,C選項(xiàng)正確;對(duì)于D選項(xiàng),根據(jù)圖象可知甲的成績(jī)的極差比乙的成績(jī)的極差小,D選項(xiàng)錯(cuò)誤.故選:BC.10.下列各式中,與SKIPIF1<0相等的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】由二倍角的余弦公式可得SKIPIF1<0,由二倍角的正切公式可判斷A;由二倍角的正弦公式可判斷B;由兩角差的余弦公式可判斷C;由同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式及二倍角的余弦公式可判斷D.【詳解】SKIPIF1<0,對(duì)于A,SKIPIF1<0,故A正確;對(duì)于B,SKIPIF1<0,故B錯(cuò)誤;對(duì)于C,SKIPIF1<0SKIPIF1<0,故C正確;對(duì)于D,SKIPIF1<0SKIPIF1<0,故D正確.故選:ACD.11.在平面直角坐標(biāo)系中,三點(diǎn)A(-1,0),B(1,0),C(0,7),動(dòng)點(diǎn)P滿足PA=SKIPIF1<0PB,則以下結(jié)論正確的是(
)A.點(diǎn)P的軌跡方程為(x-3)2+y2=8 B.△PAB面積最大時(shí),PA=2SKIPIF1<0C.∠PAB最大時(shí),PA=SKIPIF1<0 D.P到直線AC距離最小值為SKIPIF1<0【答案】ACD【分析】根據(jù)SKIPIF1<0可求得點(diǎn)SKIPIF1<0軌跡方程為SKIPIF1<0,A正確;根據(jù)直線SKIPIF1<0過圓心可知點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離最大值為SKIPIF1<0,由此可確定面積最大時(shí)SKIPIF1<0,由此可確定B不正確;當(dāng)SKIPIF1<0最大時(shí),SKIPIF1<0為圓的切線,利用切線長的求法可知C錯(cuò)誤;求得SKIPIF1<0方程后,利用圓上點(diǎn)到直線距離最值的求解方法可確定D正確.【詳解】解:對(duì)于A:設(shè)SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)可得:SKIPIF1<0,即點(diǎn)SKIPIF1<0軌跡方程為SKIPIF1<0,故A正確;對(duì)于B:SKIPIF1<0直線SKIPIF1<0過圓SKIPIF1<0的圓心,SKIPIF1<0點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的最大值為圓SKIPIF1<0的半徑SKIPIF1<0,即為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0面積最大為SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0,故B不正確;對(duì)于C:當(dāng)SKIPIF1<0最大時(shí),則SKIPIF1<0為圓SKIPIF1<0的切線,SKIPIF1<0SKIPIF1<0,故C正確;對(duì)于D:直線SKIPIF1<0的方程為SKIPIF1<0,則圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0到直線SKIPIF1<0距離最小值為SKIPIF1<0,D正確.故選:ACD.12.如圖,點(diǎn)SKIPIF1<0是正四面體SKIPIF1<0底面SKIPIF1<0的中心,過點(diǎn)SKIPIF1<0且平行于平面SKIPIF1<0的直線分別交SKIPIF1<0,SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是棱SKIPIF1<0上的點(diǎn),平面SKIPIF1<0與棱SKIPIF1<0的延長線相交于點(diǎn)SKIPIF1<0,與棱SKIPIF1<0的延長線相交于點(diǎn)SKIPIF1<0,則(
)A.若SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0B.存在點(diǎn)SKIPIF1<0與直線SKIPIF1<0,使SKIPIF1<0C.存在點(diǎn)SKIPIF1<0與直線SKIPIF1<0,使SKIPIF1<0平面SKIPIF1<0D.SKIPIF1<0【答案】ACD【分析】根據(jù)線面平行的性質(zhì)定理,可判斷A;由空間向量數(shù)量積可判斷B;當(dāng)直線SKIPIF1<0平行于直線SKIPIF1<0,SKIPIF1<0時(shí),通過線面垂直的判定定理可判斷C,由共面向量定理可判斷D.【詳解】對(duì)于A,SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0與棱SKIPIF1<0的延長線相交于點(diǎn)SKIPIF1<0,與棱SKIPIF1<0的延長線相交于點(diǎn)SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0在面SKIPIF1<0上,過點(diǎn)SKIPIF1<0的直線交SKIPIF1<0,SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故A正確;對(duì)于B,設(shè)正四面體SKIPIF1<0的棱長為SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故B錯(cuò)誤;對(duì)于C,當(dāng)直線SKIPIF1<0平行于直線SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0上靠近SKIPIF1<0的三等分點(diǎn),即SKIPIF1<0,此時(shí)SKIPIF1<0平面SKIPIF1<0,以下給出證明:在正四面體SKIPIF1<0中,設(shè)各棱長為SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0均為正三角形,SKIPIF1<0點(diǎn)SKIPIF1<0為SKIPIF1<0的中心,SKIPIF1<0,SKIPIF1<0由正三角形中的性質(zhì),易得SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由余弦定理得,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,同理,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0存在點(diǎn)S與直線MN,使SKIPIF1<0平面SKIPIF1<0,故C正確;對(duì)于D,設(shè)SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,∴SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共面,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,故D正確.故選:ACD.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查了線面平行的性質(zhì)定理、線面垂直的判定定理,考查了空間向量數(shù)量積和共面向量定理,解題的關(guān)鍵是熟悉利用空間向量的共面定理,考查了轉(zhuǎn)化能力與探究能力,屬于難題.三、填空題13.已知偶函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),則不等式SKIPIF1<0的解集是________.【答案】SKIPIF1<0【分析】利用偶函數(shù)的性質(zhì)化SKIPIF1<0為SKIPIF1<0,再利用單調(diào)性去掉法則“f”即可得解.【詳解】因SKIPIF1<0是R上偶函數(shù),則SKIPIF1<0,而而SKIPIF1<0在SKIPIF1<0上是增函數(shù),于是得SKIPIF1<0,所以不等式SKIPIF1<0的解集是SKIPIF1<0.故答案為:SKIPIF1<014.拋物線SKIPIF1<0的焦點(diǎn)坐標(biāo)是________【答案】(0,SKIPIF1<0)【詳解】拋物線SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,焦點(diǎn)坐標(biāo)為(0,SKIPIF1<0).15.已知f(x)=2x3﹣6x2+m(m為常數(shù)),在[﹣2,2]上有最大值3,那么此函數(shù)在[﹣2,2]上的最小值為.【答案】﹣37【詳解】試題分析:本題是典型的利用函數(shù)的導(dǎo)數(shù)求最值的問題,只需要利用已知函數(shù)的最大值為3,進(jìn)而求出常數(shù)m的值,即可求出函數(shù)的最小值.解:由已知,f′(x)=6x2﹣12x,有6x2﹣12x≥0得x≥2或x≤0,因此當(dāng)x∈[2,+∞),(﹣∞,0]時(shí)f(x)為增函數(shù),在x∈[0,2]時(shí)f(x)為減函數(shù),又因?yàn)閤∈[﹣2,2],所以得當(dāng)x∈[﹣2,0]時(shí)f(x)為增函數(shù),在x∈[0,2]時(shí)f(x)為減函數(shù),所以f(x)max=f(0)=m=3,故有f(x)=2x3﹣6x2+3所以f(﹣2)=﹣37,f(2)=﹣5因?yàn)閒(﹣2)=﹣37<f(2)=﹣5,所以函數(shù)f(x)的最小值為f(﹣2)=﹣37.答案為:﹣37考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.16.已知等差數(shù)列{an}的前n項(xiàng)和Sn=3n2+an,等比數(shù)列{bn}的前n項(xiàng)和Tn=2n﹣a,則a=__,數(shù)列{SKIPIF1<0}的前9項(xiàng)和為__.【答案】
1
SKIPIF1<0【分析】先由題設(shè)求出a的值,進(jìn)而求得bn,再利用an=Sn﹣Sn﹣1求得an,并檢驗(yàn)當(dāng)n=1是否適合,從而求得an與SKIPIF1<0,最后利用錯(cuò)位相減法求得數(shù)列{SKIPIF1<0}的前9項(xiàng)和即可.【詳解】解:由等比數(shù)列{bn}的前n項(xiàng)和Tn=2n﹣a,可得:b1=2﹣a,b2=T2﹣T1=2,b3=T3﹣T2=4,∴SKIPIF1<0,解得:a=1,∵Sn=3n2+an=3n2+n,∴當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=6n﹣2,又當(dāng)n=1時(shí),a1=S1=4也適合上式,∴an=6n﹣2,∵等比數(shù)列{bn}的首項(xiàng)b1=1,公比q=2,∴bn=2n﹣1,∴SKIPIF1<0,設(shè)數(shù)列{SKIPIF1<0}的前9項(xiàng)和為x,則xSKIPIF1<0,又SKIPIF1<0xSKIPIF1<0,兩式相減得:SKIPIF1<0x=4+3(1SKIPIF1<0)SKIPIF1<04+3SKIPIF1<0,整理得:xSKIPIF1<0.故答案為:1;SKIPIF1<0.四、解答題17.已知:SKIPIF1<0,SKIPIF1<0(SKIPIF1<0)是方程SKIPIF1<0的兩根,且SKIPIF1<0,SKIPIF1<0(SKIPIF1<0SKIPIF1<0N*).(1)求SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的值;(2)設(shè)SKIPIF1<0,求證:SKIPIF1<0;(3)求證:對(duì)SKIPIF1<0SKIPIF1<0SKIPIF1<0N*有SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)證明過程見解析(3)證明過程見解析【分析】(1)由已知條件,消去SKIPIF1<0可得出SKIPIF1<0的遞推關(guān)系式,即可求得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的值;(2)由SKIPIF1<0遞推關(guān)系,證出SKIPIF1<0,即可證得題中的結(jié)論;(3)當(dāng)SKIPIF1<0時(shí),使用累乘法和絕對(duì)值不等式性質(zhì)證明,再驗(yàn)證SKIPIF1<0時(shí)結(jié)論即可.(1)解方程SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,且SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0又SKIPIF1<0SKIPIF1<0SKIPIF1<0∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0又∵當(dāng)SKIPIF1<0時(shí),SKIPIF1<0∴SKIPIF1<0(3)由第(1)問知,SKIPIF1<0,∵SKIPIF1<0∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0(SKIPIF1<0)∴SKIPIF1<0(SKIPIF1<0)∴SKIPIF1<0(SKIPIF1<0)∴SKIPIF1<0(SKIPIF1<0)又∵SKIPIF1<0,∴SKIPIF1<0(SKIPIF1<0)由第(2)問知,SKIPIF1<0,∴SKIPIF1<0(SKIPIF1<0)∴SKIPIF1<0(SKIPIF1<0)∵SKIPIF1<0(SKIPIF1<0)∵SKIPIF1<0∴SKIPIF1<0(SKIPIF1<0)∴SKIPIF1<0(SKIPIF1<0)∵SKIPIF1<0即SKIPIF1<0∴SKIPIF1<0(SKIPIF1<0)又∵SKIPIF1<0時(shí),SKIPIF1<0,∴對(duì)SKIPIF1<0SKIPIF1<0SKIPIF1<0N*,有SKIPIF1<0.18.2021年5月12日,2022北京冬奧會(huì)和冬殘奧會(huì)吉祥物冰墩墩、雪容融亮相上海展覽中心.為了慶祝吉祥物在上海的亮相,某商場(chǎng)舉辦了一場(chǎng)贏取吉祥物掛件的“雙人對(duì)戰(zhàn)”游戲,游戲規(guī)則如下:參與對(duì)戰(zhàn)的雙方每次從裝有3個(gè)白球和2個(gè)黑球(這5個(gè)球的大小、質(zhì)量均相同,僅顏色不同)的盒子中輪流不放回地摸出1球,摸到最后1個(gè)黑球或能判斷出哪一方獲得最后1個(gè)黑球時(shí)游戲結(jié)束,得到最后1個(gè)黑球的一方獲勝.設(shè)游戲結(jié)束時(shí)對(duì)戰(zhàn)雙方摸球的總次數(shù)為X.(1)求隨機(jī)變量X的概率分布;(2)求先摸球的一方獲勝的概率,并判斷這場(chǎng)游戲是否公平.【答案】(1)答案見解析(2)不公平【分析】(1)首先列出隨機(jī)變量X的所有可能取值,再按照相互獨(dú)立事件的概率計(jì)算公式計(jì)算出對(duì)應(yīng)概率,即可得分布列;(2)分析出先摸球的一方獲勝的情形,即可求得先摸球的一方獲勝的概率,進(jìn)而可判斷該游戲是否公平.【詳解】(1)(1)由題可得,X的所有可能取值為2,3,4,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,X的分布列為X234PSKIPIF1<0SKIPIF1<0SKIPIF1<0(2)(2)先摸球的一方獲勝,包括以下幾種情況:雙方共摸3次球,出現(xiàn)白黑黑、黑白黑、白白白這三種情況,即SKIPIF1<0,雙方共摸4次球,出現(xiàn)的恰好是三白一黑且前三次必定出現(xiàn)一次黑球的情形,概率為SKIPIF1<0,所以先摸球的一方獲勝的概率為SKIPIF1<0.因?yàn)镾KIPIF1<0,所以這場(chǎng)游戲是不公平的.19.已知SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0三個(gè)內(nèi)角SKIPIF1<0的對(duì)邊.(1)若SKIPIF1<0面積為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的值;(2)若SKIPIF1<0,試判斷SKIPIF1<0的形狀,證明你的結(jié)論.【答案】(1)SKIPIF1<0,1(2)直角三角形或等腰三角形,證明見解析【分析】(1)利用SKIPIF1<0面積為SKIPIF1<0,直接求出SKIPIF1<0,通過余弦定理列方程求出SKIPIF1<0的值;(2)利用正弦定理化簡(jiǎn)SKIPIF1<0,利用二倍角的正弦公式可得SKIPIF1<0,求出角的關(guān)系即可判斷SKIPIF1<0的形狀.(1)由已知得SKIPIF1<0,∴SKIPIF1<0.由余弦定理SKIPIF1<0,∴SKIPIF1<0.(2)由正弦定理得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,由已知SKIPIF1<0為三角形內(nèi)角,∴SKIPIF1<0或SKIPIF1<0.∴SKIPIF1<0為直角三角形或等腰三角形.20.如圖,在三棱錐SKIPIF1<0中,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0;(2)若SKIPIF1<0是邊長為1的等邊三角形,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,SKIPIF1<0,且二面角SKIPIF1<0的大小為SKIPIF1<0,求三棱錐SKIPIF1<0的體積.【答案】(1)證明見解析;(2)SKIPIF1<0.【分析】(1)由題意首先證得線面垂直,然后利用線面垂直的定義證明線線垂直即可;(2)方法二:利用幾何關(guān)系找到二面角的平面角,然后結(jié)合相關(guān)的幾何特征計(jì)算三棱錐的體積即可.【詳解】(1)因?yàn)镾KIPIF1<0,O是SKIPIF1<0中點(diǎn),所以SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,且平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.(2)[方法一]:通性通法—坐標(biāo)法如圖所示,以O(shè)為坐標(biāo)原點(diǎn),SKIPIF1<0為SKIPIF1<0軸,SKIPIF1<0為y軸,垂直SKIPIF1<0且過O的直線為x軸,建立空間直角坐標(biāo)系SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0為平面SKIPIF1<0的法向量,則由SKIPIF1<0可求得平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0.又平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.又點(diǎn)C到平面SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0,所以三棱錐SKIPIF1<0的體積為SKIPIF1<0.[方法二]【最優(yōu)解】:作出二面角的平面角如圖所示,作SKIPIF1<0,垂足為點(diǎn)G.作SKIPIF1<0,垂足為點(diǎn)F,連結(jié)SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0為二面角SKIPIF1<0的平面角.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.由已知得SKIPIF1<0,故SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0.[方法三]:三面角公式考慮三面角SKIPIF1<0,記SKIPIF1<0為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0,SKIPIF1<0,記二面角SKIPIF1<0為SKIPIF1<0.據(jù)題意,得SKIPIF1<0.對(duì)SKIPIF1<0使用三面角的余弦公式,可得SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0.①使用三面角的正弦公式,可得SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0.②將①②兩式平方后相加,可得SKIPIF1<0,由此得SKIPIF1<0,從而可得SKIPIF1<0.如圖可知SKIPIF1<0,即有SKIPIF1<0,根據(jù)三角形相似知,點(diǎn)G為SKIPIF1<0的三等分點(diǎn),即可得SKIPIF1<0,結(jié)合SKIPIF1<0的正切值,可得SKIPIF1<0從而可得三棱錐SKIPIF1<0的體積為SKIPIF1<0.【整體點(diǎn)評(píng)】(2)方法一:建立空間直角坐標(biāo)系是解析幾何中常用的方法,是此類題的通性通法,其好處在于將幾何問題代數(shù)化,適合于復(fù)雜圖形的處理;方法二:找到二面角的平面角是立體幾何的基本功,在找出二面角的同時(shí)可以對(duì)幾何體的幾何特征有更加深刻的認(rèn)識(shí),該法為本題的最優(yōu)解.方法三:三面角公式是一個(gè)優(yōu)美的公式,在很多題目的解析中靈活使用三面角公式可以使得問題更加簡(jiǎn)單、直觀、迅速.21.如圖,直線SKIPIF1<0與直線SKIPIF1<0之間的陰影區(qū)域(不含邊界)記為SKIPIF1<0,其左半部分記為SKIPIF1<0,右半部分記為SKIPIF1<0.(1)分別用不等式組表示SKIPIF1<0和SKIPIF1<0;(2)若區(qū)域SKIPIF1<0中的動(dòng)點(diǎn)SKIPIF1<0到SKIPIF1<0的距離之積等于SKIPIF1<0,求點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程;(3)設(shè)不過原點(diǎn)SKIPIF1<0的直線SKIPIF1<0與(2)中的曲線SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),且與SKIPIF1<0分別交于SKIPIF1<0兩點(diǎn).求證SKIPIF1<0的重心與SKIPIF1<0的重心重合.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0(3)證明見解析【分析】(1)直接寫出答案即可.(2)根據(jù)題意得到SKIPIF1<0,判斷SKIPIF1<0,代入化簡(jiǎn)得到答案.(3)考慮直線與SKIPIF1<0軸垂直和不垂直兩種情況,聯(lián)立方程,根據(jù)韋達(dá)定理得到根與系數(shù)的關(guān)系,計(jì)算得到SKIPIF1<0,SKIPIF1<0,根據(jù)重心坐標(biāo)公式得到證明.【詳解】(1)SKIPIF1<0,SKIPIF1<0.(2)直線SKIPIF1<0,直線SKIPIF1<0,由題意得SKIPIF1<0,即SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中性樹脂購買合同范例
- 建圍墻 合同模板
- 居室裝潢工程施工合同范例
- 官田房屋租賃合同范例
- 就業(yè)保密合同模板
- 重癥醫(yī)學(xué)科感染控制總結(jié)
- 戶外拓展活動(dòng)租賃合同范例
- 協(xié)議鋼板銷售合同模板
- 建設(shè)工程安裝合同范例
- 工廠補(bǔ)差價(jià)合同范例
- 個(gè)人借條范本版(最新)word版
- 小學(xué)語文人教三年級(jí)上冊(cè)第六組-2《奇妙的中心句》群文閱讀教學(xué)設(shè)計(jì)
- 《空氣和我們的生活》教案
- 高中化學(xué)人教版(2019)必修第一冊(cè)全套教案
- 工程項(xiàng)目估價(jià)全套教學(xué)課件
- 混凝土涵管安裝現(xiàn)場(chǎng)質(zhì)量檢驗(yàn)報(bào)告單
- 商業(yè)銀行互聯(lián)網(wǎng)金融平臺(tái)運(yùn)營管理辦法
- 中國天眼·南仁東傳(2019貴州貴陽記敘文)
- 部編人教版六年級(jí)下冊(cè)語文表格教案
- 廣東省十行業(yè)企財(cái)險(xiǎn)純風(fēng)險(xiǎn)損失率表(試行)doc
- 《國學(xué)智慧系列》之儒道禪與現(xiàn)代管理
評(píng)論
0/150
提交評(píng)論