版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南紅河州第一中學2024屆高一上數(shù)學期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)為全集,是集合,則“存在集合使得是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件2.已知圓:與圓:,則兩圓的位置關(guān)系是A.相交 B.相離C.內(nèi)切 D.外切3.下列四個函數(shù)中,在其定義域上既是奇函數(shù)又是單調(diào)遞增函數(shù)的是A. B.C. D.4.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,若,則不等式解集為A. B.C. D.5.若直線l1∥l2,且l1的傾斜角為45°,l2過點(4,6),則l2還過下列各點中的A.(1,8) B.(-2,0)C.(9,2) D.(0,-8)6.已知,現(xiàn)要將兩個數(shù)交換,使,下面語句正確的是A. B.C. D.7.給出下列四個命題:①底面是正多邊形的棱柱是正棱柱;②四棱柱、四棱臺、五棱錐都是六面體;③所有棱長相等的棱柱一定是直棱柱;④直角三角形繞其一條邊所在的直線旋轉(zhuǎn)一周形成的幾何體是圓錐其中正確的命題個數(shù)是()A.0 B.1C.2 D.38.已知函數(shù)是上的偶函數(shù),且在區(qū)間上是單調(diào)遞增的,,,是銳角三角形的三個內(nèi)角,則下列不等式中一定成立的是A. B.C. D.9.向量,若,則k的值是()A.1 B.C.4 D.10.正方形中,點,分別是,的中點,那么A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列四種說法:(1)函數(shù)與函數(shù)的定義域相同;(2)函數(shù)與的值域相同;(3)若函數(shù)式定義在R上的偶函數(shù)且在為減函數(shù)對于銳角則;(4)若函數(shù)且,則;其中正確說法序號是________.12.已知函數(shù),且關(guān)于的方程有且僅有一個實數(shù)根,那實數(shù)的取值范圍為________13.函數(shù)(其中,,)的圖象如圖所示,則函數(shù)的解析式為__________14.設(shè)函數(shù),若關(guān)于x的方程有四個不同的解,,,,,且,則m的取值范圍是_____,的取值范圍是__________15.若關(guān)于x的不等式對一切實數(shù)x恒成立,則實數(shù)k的取值范圍是___________.16.已知某扇形的半徑為,面積為,那么該扇形的弧長為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.求滿足下列條件的圓的方程:(1)經(jīng)過點,,圓心在軸上;(2)經(jīng)過直線與的交點,圓心為點.18.已知圓外有一點,過點作直線(1)當直線與圓相切時,求直線的方程;(2)當直線的傾斜角為時,求直線被圓所截得的弦長19.經(jīng)市場調(diào)查,某超市的一種小商品在過去的近20天內(nèi)的銷售量(件)與價格(元)均為時間t(天)的函數(shù),且銷售量近似滿足g(t)=80-2t,價格近似滿足f(t)=20-|t-10|.(1)試寫出該種商品的日銷售額y與時間t(0≤t≤20)的函數(shù)表達式;(2)求該種商品的日銷售額y的最大值與最小值.20.函數(shù)中角的終邊經(jīng)過點,若時,的最小值為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間.21.已知函數(shù),其中,且.(1)求的值及的最小正周期;(2)當時,求函數(shù)的值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】①當,,且,則,反之當,必有.②當,,且,則,反之,若,則,,所以.③當,則;反之,,.綜上所述,“存在集合使得是“”的充要條件.考點:集合與集合的關(guān)系,充分條件與必要條件判斷,容易題.2、C【解題分析】分析:求出圓心的距離,與半徑的和差的絕對值比較得出結(jié)論詳解:圓,圓,,所以內(nèi)切.故選C點睛:兩圓的位置關(guān)系判斷如下:設(shè)圓心距為,半徑分別為,則:,內(nèi)含;,內(nèi)切;,相交;,外切;,外離3、C【解題分析】易知為非奇非偶函數(shù),故排除選項A,因為,,故排除選項B、D,而在定義域上既是奇函數(shù)又是單調(diào)遞增函數(shù).故選C.4、B【解題分析】,又函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,所以,解得.考點:偶函數(shù)的性質(zhì).【思路點睛】本題主要考查不等式的求解,利用函數(shù)奇偶性和單調(diào)性的性質(zhì)進行轉(zhuǎn)化是解決本題的關(guān)鍵.根據(jù)函數(shù)奇偶性可得,再根據(jù)函數(shù)的單調(diào)性,可得;然后再解不等式即可求出結(jié)果5、B【解題分析】由題意求出得方程,將四個選項逐一代入,即可驗證得到答案.【題目詳解】由題直線l1∥l2,且l1的傾斜角為45°,則的傾斜角為45,斜率由點斜式可得的方程為即四個選項中只有B滿足方程.即l2還過點(-2,0).故選B【題目點撥】本題考查直線方程的求法,屬基礎(chǔ)題.6、D【解題分析】通過賦值語句,可得,故選D.7、B【解題分析】利用幾何體的結(jié)構(gòu)特征,幾何體的定義,逐項判斷選項的正誤即可【題目詳解】解:①底面是正多邊形,側(cè)棱與底面垂直的棱柱是正棱柱;所以①不正確;②四棱柱、四棱臺、五棱錐都是六面體;滿足多面體的定義,所以②正確;③所有棱長相等的棱柱一定是直棱柱;不滿足直棱柱的定義,所以③不正確;④直角三角形繞直角邊所在的直線旋轉(zhuǎn)一周形成的幾何體是圓錐.所以④不正確;故選:B8、C【解題分析】因為是銳角的三個內(nèi)角,所以,得,兩邊同取余弦函數(shù),可得,因為在上單調(diào)遞增,且是偶函數(shù),所以在上減函數(shù),由,可得,故選C.點睛:本題考查了比較大小問題,解答中熟練推導抽象函數(shù)的圖象與性質(zhì),合理利用函數(shù)的單調(diào)性進行比較大小是解答的關(guān)鍵,著重考查學生的推理與運算能力,本題的解答中,根據(jù)銳角三角形,得出與的大小關(guān)系是解答的一個難點.9、B【解題分析】首先算出的坐標,然后根據(jù)建立方程求解即可.【題目詳解】因為所以,因為,所以,所以故選:B10、D【解題分析】由題意點,分別是,中點,求出,,然后求出向量即得【題目詳解】解:因為點是的中點,所以,點得是的中點,所以,所以,故選:【題目點撥】本題考查向量加減混合運算及其幾何意義,注意中點關(guān)系與向量的方向,考查基本知識的應(yīng)用。屬于基礎(chǔ)題。二、填空題:本大題共6小題,每小題5分,共30分。11、(1)(3)【解題分析】(1)根據(jù)定義域直接判斷;(2)分別求出值域即可判斷;(3)利用偶函數(shù)圖形的對稱性得出在上的單調(diào)性及銳角,可以判斷;(4)通過對數(shù)性質(zhì)及對數(shù)運算即可判斷.【題目詳解】(1)函數(shù)與函數(shù)的定義域都為.所以(1)正確.(2)函數(shù)的值域為而的值域為,所以值域不同,故(2)錯誤.(3)函數(shù)在定義R上的偶函數(shù)且在為減函數(shù),則函數(shù)在在為增函數(shù),又為銳角,則,所以,故(3)正確.(4)函數(shù)且,則,即,得,故(4)錯誤.故答案為:(1)(3).【題目點撥】本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)的定義域與值域的求解,函數(shù)的奇偶性和單調(diào)性的判定,對數(shù)的運算,屬于函數(shù)知識的綜合應(yīng)用,是中檔題.12、【解題分析】利用數(shù)形結(jié)合的方法,將方程根的問題轉(zhuǎn)化為函數(shù)圖象交點的問題,觀察圖象即可得到結(jié)果.【題目詳解】作出的圖象,如下圖所示:∵關(guān)于的方程有且僅有一個實數(shù)根,∴函數(shù)的圖象與有且只有一個交點,由圖可知,則實數(shù)的取值范圍是.故答案為:.13、【解題分析】如圖可知函數(shù)的最大值,當時,代入,,當時,代入,,解得則函數(shù)的解析式為14、①.②.【解題分析】畫出的圖象,結(jié)合圖象可得的取值范圍及,,再利用函數(shù)的單調(diào)性可求目標代數(shù)式的范圍.【題目詳解】的圖象如下圖所示,當時,直線與的圖象有四個不同的交點,即關(guān)于x的方程有四個不同的解,,,.結(jié)合圖象,不難得即又,得即,且,所以,設(shè),易知道在上單調(diào)遞增,所以,即的取值范圍是故答案為:,.思路點睛:知道函數(shù)零點的個數(shù),討論零點滿足的性質(zhì)時,一般可結(jié)合初等函數(shù)的圖象和性質(zhì)來處理,注意圖象的正確的刻畫.15、【解題分析】根據(jù)一元二次不等式與二次函數(shù)的關(guān)系,可知只需判別式,利用所得不等式求得結(jié)果.【題目詳解】不等式對一切實數(shù)x恒成立,,解得:故答案為:.16、【解題分析】根據(jù)扇形面積公式可求得答案.【題目詳解】設(shè)該扇形的弧長為,由扇形的面積,可得,解得.故答案.【題目點撥】本題考查了扇形面積公式的應(yīng)用,考查了學生的計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)設(shè)出圓的方程,代入A、B兩點坐標,求出圓心和半徑,從而求出圓的方程;(2)先求出交點坐標,進而求出半徑,寫出圓的方程.【小問1詳解】設(shè)圓的方程為,由題意得:,解得:,所以圓的方程為;【小問2詳解】聯(lián)立與,解得:,所以交點為,則圓的半徑為,所以圓的方程為.18、(1)或(2)【解題分析】(1)根據(jù)題意分斜率不存在和斜率存在兩種情況即可求得結(jié)果;(2)先求出直線方程,然后求得圓心與直線距離,由弦長公式即可得出答案.【題目詳解】解:(1)由題意可得,直線與圓相切當斜率不存在時,直線的方程為,滿足題意當斜率存在時,設(shè)直線的方程為,即∴,解得∴直線的方程為∴直線的方程為或(2)當直線的傾斜角為時,直線的方程為圓心到直線的距離為∴弦長為【題目點撥】本題考查了直線的方程、直線與圓的位置關(guān)系、點到直線的距離公式及弦長公式,培養(yǎng)了學生分析問題與解決問題的能力.19、解:(1)y(2)ymax=1225,ymin=600【解題分析】解:(Ⅰ)=(Ⅱ)當0≤t<10時,y的取值范圍是[1200,1225],在t=5時,y取得最大值為1225;當10≤t≤20時,y的取值范圍是[600,1200],在t=20時,y取得最小值為600(答)總之,第5天,日銷售額y取得最大為1225元;第20天,日銷售額y取得最小為600元20、(1)(2),【解題分析】(1)根據(jù)角的終邊經(jīng)過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃車輛合同協(xié)議文本
- 大客戶采購合同的監(jiān)管措施
- 瓦工工種勞務(wù)分包合作協(xié)議
- 網(wǎng)絡(luò)技術(shù)服務(wù)合同示范文本樣本
- 個性化印刷采購協(xié)議
- 電子行業(yè)專用包裝材料購銷合同
- 拖車運輸服務(wù)協(xié)議
- 工程分包所需勞務(wù)合同
- 房屋買賣合同簽訂前的房屋質(zhì)量檢查
- 網(wǎng)絡(luò)打印機選購協(xié)議
- 2024-2025學年高二上學期期末數(shù)學試卷(基礎(chǔ)篇)(含答案)
- 直系親屬股權(quán)無償轉(zhuǎn)讓合同(2篇)
- 2023-2024學年廣東省廣州市白云區(qū)九年級(上)期末語文試卷
- 汽車吊籃使用專項施工方案
- 2024年典型事故案例警示教育手冊15例
- 中秋國慶慰問品采購投標方案
- 110kV變電站及110kV輸電線路運維投標技術(shù)方案(第二部分)
- 新高處安裝維護拆除作業(yè)專題培訓課件
- 培養(yǎng)教育考察記實簿
- 心可寧膠囊作用機理探析
- 工程管理基礎(chǔ)知識考試試題(最新整理)
評論
0/150
提交評論