版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆湖北省部分重點高中數(shù)學(xué)高一上期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),若存在四個互不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B.C. D.2.已知、是兩條不同的直線,、是兩個不同的平面,給出下列命題:①若,,則;②若,,且,則;③若,,則;④若,,且,則其中正確命題的序號是()A.②③ B.①④C.②④ D.①③3.已知函數(shù),若圖象過點,則的值為()A. B.2C. D.4.已知正實數(shù)滿足,則的最小值是()A B.C. D.5.由直線上的點向圓引切線,則切線長的最小值為()A. B.C. D.6.已知函數(shù),若,則x的值是()A.3 B.9C.或1 D.或37.設(shè)奇函數(shù)f(x)在(0,+∞)上為減函數(shù),且f(1)=0,則不等式<0的解集為()A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)8.已知角的終邊過點,則等于()A.2 B.C. D.9.設(shè),且,則的最小值為()A.4 B.C. D.610.將函數(shù)的周期擴大到原來的2倍,再將函數(shù)圖象左移,得到圖象對應(yīng)解析式是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.一條從西向東的小河的河寬為3.5海里,水的流速為3海里/小時,如果輪船希望用10分鐘的時間從河的南岸垂直到達北岸,輪船的速度應(yīng)為______;12.如圖所示,正方體的棱長為1,B′C∩BC′=O,則AO與A′C′所成角的度數(shù)為________.13.寫出一個值域為,在區(qū)間上單調(diào)遞增的函數(shù)______14.函數(shù)一段圖象如圖所示則的解析式為______15.若命題“”為真命題,則的取值范圍是______16.下列命題中正確的是________(1)是的必要不充分條件(2)若函數(shù)的最小正周期為(3)函數(shù)的最小值為(4)已知函數(shù),在上單調(diào)遞增,則三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,求,的值;求的值18.判斷并證明在的單調(diào)性.19.已知函數(shù)(,),若函數(shù)在區(qū)間上的最大值為3,最小值為2.(1)求函數(shù)的解析式;(2)求在上的單調(diào)遞增區(qū)間;(3)是否存在正整數(shù),滿足不等式,若存在,找出所有這樣的,的值,若不存在,說明理由.20.已知函數(shù),為偶函數(shù)(1)求k的值.(2)若函數(shù),是否存在實數(shù)m使得的最小值為0,若存在,求出m的值;若不存在,請說明理由21.如圖,在平面直角坐標(biāo)系中,角,的始邊均為軸正半軸,終邊分別與圓交于,兩點,若,,且點的坐標(biāo)為(1)若,求實數(shù)的值;(2)若,求的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】令,則,由題意,有兩個不同的解,有兩個不相等的實根,由圖可知,得或,所以和各有兩個解當(dāng)有兩個解時,則,當(dāng)有兩個解時,則或,綜上,的取值范圍是,故選D點睛:本題考查函數(shù)性質(zhì)的應(yīng)用.本題為嵌套函數(shù)的應(yīng)用,一般的,我們應(yīng)用整體思想解決問題,所以令,則,由題意,有兩個不同的解,有兩個不相等的實根,再結(jié)合圖象逐步分析,解得答案2、A【解題分析】對于①當(dāng),時,不一定成立;對于②可以看成是平面的法向量,是平面的法向量即可;對于③可由面面垂直的判斷定理作出判斷;對于④,也可能相交【題目詳解】①當(dāng),時,不一定成立,m可能在平面所以錯誤;②利用當(dāng)兩個平面的法向量互相垂直時,這兩個平面垂直,故成立;③因為,則一定存在直線在,使得,又可得出,由面面垂直的判定定理知,,故成立;④,,且,,也可能相交,如圖所示,所以錯誤,故選A【題目點撥】本題以命題的真假判斷為載體考查了空間直線與平面的位置關(guān)系,熟練掌握空間線面關(guān)系的判定及幾何特征是解答的關(guān)鍵3、B【解題分析】分析】將代入求得,進而可得的值.【題目詳解】因為函數(shù)的圖象過點,所以,則,所以,,故選:B.4、B【解題分析】根據(jù)題中條件,得到,展開后根據(jù)基本不等式,即可得出結(jié)果.【題目詳解】因為正實數(shù)滿足,所以,當(dāng)且僅當(dāng),即時,等號成立.故選:B.【題目點撥】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.5、B【解題分析】要使切線長最小,必須直線y=x+2上的點到圓心的距離最小,此最小值即為圓心(4,﹣2)到直線的距離m,求出m,由勾股定理可求切線長的最小值【題目詳解】要使切線長最小,必須直線y=x+2上的點到圓心的距離最小,此最小值即為圓心(4,﹣2)到直線的距離m,由點到直線的距離公式得m==4,由勾股定理求得切線長的最小值為=故選B【題目點撥】本題考查直線和圓的位置關(guān)系,點到直線的距離公式、勾股定理的應(yīng)用.解題的關(guān)鍵是理解要使切線長最小,必須直線y=x+2上的點到圓心的距離最小6、A【解題分析】分段解方程即可.【題目詳解】當(dāng)時,,解得(舍去);當(dāng)時,,解得或(舍去).故選:A7、C【解題分析】利用函數(shù)奇偶性,等價轉(zhuǎn)化目標(biāo)不等式,再結(jié)合已知條件以及函數(shù)單調(diào)性,即可求得不等式解集.【題目詳解】∵f(x)為奇函數(shù),故可得,則<0等價于.∵f(x)在(0,+∞)上為減函數(shù)且f(1)=0,∴當(dāng)x>1時,f(x)<0.∵奇函數(shù)圖象關(guān)于原點對稱,∴在(-∞,0)上f(x)為減函數(shù)且f(-1)=0,即x<-1時,f(x)>0.綜上使<0的解集為(-∞,-1)∪(1,+∞)故選:.【題目點撥】本題考查利用函數(shù)奇偶性和單調(diào)性解不等式,屬綜合基礎(chǔ)題.8、B【解題分析】由正切函數(shù)的定義計算【題目詳解】由題意故選:B9、C【解題分析】利用基本不等式“1”的代換求目標(biāo)式的最小值,注意等號成立條件.【題目詳解】由,當(dāng)且僅當(dāng)時等號成立.故選:C10、D【解題分析】直接利用函數(shù)圖象的與平移變換求出函數(shù)圖象對應(yīng)解析式【題目詳解】解:將函數(shù)y=5sin(﹣3x)的周期擴大為原來的2倍,得到函數(shù)y=5sin(x),再將函數(shù)圖象左移,得到函數(shù)y=5sin[(x)]=5sin()=5sin()故選D【題目點撥】本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、15海里/小時【解題分析】先求出船的實際速度,再利用勾股定理得到輪船的速度.【題目詳解】設(shè)船的實際速度為,船速,水的流速,則海里/小時,∴海里/小時.故答案為:15海里/小時12、30°【解題分析】∵A′C′∥AC,∴AO與A′C′所成的角就是∠OAC(或其補角).∵OC?平面BB′C′C,AB⊥平面BB′C′C,∴OC⊥AB.又OC⊥OB,AB∩BO=B,∴OC⊥平面ABO.又AO?平面ABO,∴OC⊥OA.在Rt△AOC中,,∴∠OAC=30°.即AO與A′C′所成角度數(shù)為30°.點睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面問題化歸為共面問題來解決,具體步驟如下:①平移:平移異面直線中的一條或兩條,作出異面直線所成的角;②認定:證明作出的角就是所求異面直線所成的角;③計算:求該角的值,常利用解三角形;④取舍:由異面直線所成的角的取值范圍是,當(dāng)所作的角為鈍角時,應(yīng)取它的補角作為兩條異面直線所成的角13、【解題分析】綜合考慮值域與單調(diào)性即可寫出滿足題意的函數(shù)解析式.【題目詳解】,理由如下:為上的減函數(shù),且,為上的增函數(shù),且,,故答案為:14、【解題分析】由函數(shù)的最值求出A,由周期求出,由五點法作圖求出的值,從而得到函數(shù)的解析式【題目詳解】由函數(shù)的圖象的頂點的縱坐標(biāo)可得,再由函數(shù)的周期性可得,再由五點法作圖可得,故函數(shù)的解析式為,故答案為【題目點撥】本題主要考查函數(shù)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出,由五點法作圖求出的值,屬于中檔題15、【解題分析】依題意可得恒成立,則,得到一元二次不等式,解得即可;【題目詳解】解:依題意可得,命題等價于恒成立,故只需要解得,即故答案為:16、(3)(4)【解題分析】對于(1)對角取特殊值即可驗證;對于(2)采用數(shù)形結(jié)合即可得到答案;對于(3)把函數(shù)進行化簡為關(guān)于的函數(shù),再利用基本不等式即可得到答案;對于(4)用整體的思想,求出單調(diào)增區(qū)間為,再讓即可得到答案.【題目詳解】對于(1),當(dāng),當(dāng),不滿足是的必要條件,故(1)錯誤;對于(2),函數(shù)的最小正周期為,故(2)錯誤;對于(3),,當(dāng)且僅當(dāng)?shù)忍柍闪?,故?)正確;對于(4)函數(shù)的單調(diào)增區(qū)間為,若在上單調(diào)遞增,則,又,故(4)正確.故答案為:(3)(4).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解題分析】正切的二倍角公式得,再由同角三角函數(shù)關(guān)系式即可得的值.先計算然后由角的范圍即可確定角.【題目詳解】,且,所以:故:,,,所以:,由于:所以:,所以:,,,,所以:【題目點撥】本題考查三角函數(shù)關(guān)系式的恒等變換,考查給值求角問題,通過求角的某種三角函數(shù)值來求角,在選取函數(shù)時,有以下原則:用已知三角函數(shù)值的角來表示未知角,(1)已知正切函數(shù)值,則選正切函數(shù);(2)已知正弦、余弦函數(shù)值,則選正弦或余弦函數(shù).若角的范圍是,則選正弦、余弦皆可;若角的范圍是,則選余弦較好;若角的范圍為,則選正弦較好18、函數(shù)在單調(diào)遞增【解題分析】根據(jù)函數(shù)單調(diào)性的定義進行證明即可【題目詳解】根據(jù)函數(shù)單調(diào)性定義:任取,所以因為,所以,所以所以原函數(shù)單調(diào)遞增。19、(1)(2)(3)存在,,或,或,【解題分析】(1)根據(jù)函數(shù)在區(qū)間上的最大值為3,最小值為2,利用正弦函數(shù)的最值求解;(2)利用正弦函數(shù)的單調(diào)性求解;(3)先化簡不等式,再根據(jù),為正整數(shù)求解.【小問1詳解】解:∵,∴,∴,又∵m>0,最大值為3,最小值為2,∴,解得m=2,n=1.∴.【小問2詳解】令,k∈Z,得到,k∈Z,當(dāng)k=0時,,∴在[0,2]上的單調(diào)遞增區(qū)間是.【小問3詳解】由,得,∵a∈N*,b∈N*,∴a=1時,b=1或2;a=2時,b=1;a>2時,b不存在,∴所有滿足題意a,b的值為:a=1,b=1或a=1,b=2或a=2,b=1.20、(1)(2)存在使得的最小值為0【解題分析】(1)利用偶函數(shù)的定義可得,化簡可得對一切恒成立,進而求得的值;(2)由(1)知,,令,則,再分、、進行討論即可得解【小問1詳解】解:由函數(shù)是偶函數(shù)可知,,即,所以,即對一切恒成立,所以;【小問2詳解】解:由(1)知,,,令,則,①當(dāng)時,在上單調(diào)遞增,故,不合
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB 23394-2024呼吸防護正壓式自給閉路壓縮氧氣呼吸器
- 二零二五年度高速公路電氣設(shè)施安裝工程分包合同2篇
- 二零二五版哈爾濱租賃房屋物業(yè)費繳納協(xié)議3篇
- 2024版商業(yè)管理咨詢項目合作合同版B版
- 二零二五版國際貿(mào)易實務(wù)法規(guī)解讀與應(yīng)用合同3篇
- 2025年數(shù)據(jù)處理協(xié)議3篇
- 2024版花卉綠植采購合同書
- 2025年度股權(quán)代持與員工持股計劃協(xié)議范本3篇
- 2025年度9%股權(quán)轉(zhuǎn)讓與文化旅游產(chǎn)業(yè)發(fā)展合同3篇
- 二零二五版成都上灶師父招聘與餐飲業(yè)人才培養(yǎng)合同2篇
- 外呼合作協(xié)議
- 小學(xué)二年級100以內(nèi)進退位加減法800道題
- 2025年1月普通高等學(xué)校招生全國統(tǒng)一考試適應(yīng)性測試(八省聯(lián)考)語文試題
- 《立式輥磨機用陶瓷金屬復(fù)合磨輥輥套及磨盤襯板》編制說明
- 保險公司2025年工作總結(jié)與2025年工作計劃
- 育肥牛購銷合同范例
- 暨南大學(xué)珠海校區(qū)財務(wù)辦招考財務(wù)工作人員管理單位遴選500模擬題附帶答案詳解
- DB51-T 2944-2022 四川省社會組織建設(shè)治理規(guī)范
- 2024北京初三(上)期末英語匯編:材料作文
- 2023年輔導(dǎo)員職業(yè)技能大賽試題及答案
- 禮儀服務(wù)合同三篇
評論
0/150
提交評論