版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省吉安市永豐中學(xué)2024屆數(shù)學(xué)高一上期末質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知定義域為R的函數(shù)在單調(diào)遞增,且為偶函數(shù),若,則不等式的解集為()A. B.C. D.2.已知角的終邊上一點,且,則()A. B.C. D.3.函數(shù)的最大值為A.2 B.C. D.44.如圖,在中,已知為上一點,且滿足,則實數(shù)的值為A. B.C. D.5.已知扇形的周長為8,圓心角為2弧度,則該扇形的面積為A B.C. D.6.斜率為4的直線經(jīng)過點A(3,5),B(a,7),C(-1,b)三點,則a,b的值為()A.a=,b=0 B.a=-,b=-11C.a=,b=-11 D.a=-,b=117.已知角的終邊經(jīng)過點,則的值為A. B.C. D.8.已知函數(shù),若,,,則實數(shù)、、的大小關(guān)系為()A. B.C. D.9.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.沿軸向左平移個單位 B.沿軸向右平移個單位C.沿軸向左平移個單位 D.沿軸向右平移個單位10.如果,那么下列不等式中,一定成立的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知甲、乙兩組數(shù)據(jù)已整理成如圖所示的莖葉圖,則甲組數(shù)據(jù)的中位數(shù)是___________,乙組數(shù)據(jù)的25%分位數(shù)是___________12.函數(shù)的圖象必過定點___________13.已知圓心角為2rad的扇形的周長為12,則該扇形的面積為____________.14.已知函數(shù)其中且的圖象過定點,則的值為______15.已知,則________.16.的定義域為_________;若,則_____三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.果園A占地約3000畝,擬選用果樹B進(jìn)行種植,在相同種植條件下,果樹B每畝最多可種植40棵,種植成本(萬元)與果樹數(shù)量(百棵)之間的關(guān)系如下表所示.149161(1)根據(jù)以上表格中的數(shù)據(jù)判斷:與哪一個更適合作為與的函數(shù)模型;(2)已知該果園的年利潤(萬元)與的關(guān)系為,則果樹數(shù)量為多少時年利潤最大?18.已知定義在上的奇函數(shù)滿足:①;②對任意的均有;③對任意的,,均有.(1)求的值;(2)證明在上單調(diào)遞增;(3)是否存在實數(shù),使得對任意的恒成立?若存在,求出的取值范圍;若不存在,請說明理由.19.已知函數(shù).求:(1)函數(shù)的單調(diào)遞減區(qū)間,對稱軸,對稱中心;(2)當(dāng)時,函數(shù)的值域20.已知函數(shù)(其中且)是奇函數(shù).(1)求的值;(2)若對任意的,都有不等式恒成立,求實數(shù)的取值范圍.21.十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃,2020年某企業(yè)計劃引進(jìn)新能源汽車生產(chǎn)設(shè)備看,通過市場分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛)需另投入成本y(萬元),且由市場調(diào)研知,每輛車售價6萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完(1)求出2020年的利潤S(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額減去成本)(2)當(dāng)2020年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】根據(jù)題意,由函數(shù)為偶函數(shù)分析可得函數(shù)的圖象關(guān)于直線對稱,結(jié)合函數(shù)的單調(diào)性以及特殊值分析可得,解可得的取值范圍,即可得答案【題目詳解】解:根據(jù)題意,函數(shù)為偶函數(shù),則函數(shù)的圖象關(guān)于直線對稱,又由函數(shù)在,單調(diào)遞增且f(3),則,解可得:,即不等式的解集為;故選:D2、B【解題分析】由三角函數(shù)的定義可列方程解出,需注意的范圍【題目詳解】由三角函數(shù)定義,解得,由,知,則.故選:B.3、B【解題分析】根據(jù)兩角和的正弦公式得到函數(shù)的解析式,結(jié)合函數(shù)的性質(zhì)得到結(jié)果.【題目詳解】函數(shù)根據(jù)兩角和的正弦公式得到,因為x根據(jù)正弦函數(shù)的性質(zhì)得到最大值為.故答案為B.【題目點撥】這個題目考查了三角函數(shù)的兩角和的正弦公式的應(yīng)用,以及函數(shù)的圖像的性質(zhì)的應(yīng)用,題型較為基礎(chǔ).4、B【解題分析】所以,所以。故選B。5、A【解題分析】利用弧長公式、扇形的面積計算公式即可得出【題目詳解】設(shè)此扇形半徑為r,扇形弧長為l=2r則2r+2r=8,r=2,∴扇形的面積為r=故選A【題目點撥】本題考查了弧長公式、扇形的面積計算公式,屬于基礎(chǔ)題6、C【解題分析】因為,所以,則,故選C7、C【解題分析】因為點在單位圓上,又在角的終邊上,所以;則;故選C.8、D【解題分析】根據(jù)條件判斷函數(shù)是偶函數(shù),且當(dāng)時是增函數(shù),結(jié)合函數(shù)單調(diào)性進(jìn)行比較即可【題目詳解】函數(shù)為偶函數(shù),當(dāng)時,為增函數(shù),,,,則(1),即,則,故選:9、C【解題分析】利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論【題目詳解】,將函數(shù)的圖象沿軸向左平移個單位,即可得到函數(shù)的圖象,故選:C【題目點撥】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題10、D【解題分析】取,利用不等式性質(zhì)可判斷ABC選項;利用不等式的性質(zhì)可判斷D選項.【題目詳解】若,則,所以,,,ABC均錯;因為,則,因為,則,即.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、①.45②.35【解題分析】利用中位數(shù)的概念及百分位數(shù)的概念即得.【題目詳解】由題可知甲組數(shù)據(jù)共9個數(shù),所以甲組數(shù)據(jù)的中位數(shù)是45,由莖葉圖可知乙組數(shù)據(jù)共9個數(shù),又,所以乙組數(shù)據(jù)的25%分位數(shù)是35.故答案為:45;35.12、【解題分析】f(x)=k(x-1)-ax-1,x=1時,y=f(x)=-1,∴圖象必過定點(1,-1).13、9【解題分析】根據(jù)題意條件,先設(shè)出扇形的半徑和弧長,并找到弧長與半徑之間的關(guān)系,通過已知的扇形周長,可以求解出扇形的半徑和弧長,然后再利用完成求解.【題目詳解】設(shè)扇形的半徑為,弧長為,由已知得,圓心角,則,因為扇形的周長為12,所以,所以,,則.故答案為:9.14、1【解題分析】根據(jù)指數(shù)函數(shù)的圖象過定點,即可求出【題目詳解】函數(shù)其中且的圖象過定點,,,則,故答案為1【題目點撥】本題考查了指數(shù)函數(shù)圖象恒過定點的應(yīng)用,屬于基礎(chǔ)題.15、【解題分析】利用誘導(dǎo)公式化簡等式,可求出的值,將所求分式變形為,在所得分式的分子和分母中同時除以,將所求分式轉(zhuǎn)化為只含的代數(shù)式,代值計算即可.【題目詳解】,,,因此,.故答案為:.【題目點撥】本題考查利用誘導(dǎo)公式和弦化切思想求值,解題的關(guān)鍵就是求出的值,考查計算能力,屬于基礎(chǔ)題.16、①.;②.3.【解題分析】空一:根據(jù)正切型函數(shù)的定義域進(jìn)行求解即可;空二:根據(jù)兩角和的正切公式進(jìn)行求解即可.【題目詳解】空一:由函數(shù)解析式可知:,所以該函數(shù)的定義域為:;空二:因為,所以.故答案為:;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)更適合作為與的函數(shù)模型(2)果樹數(shù)量為時年利潤最大【解題分析】(1)將點代入和,求出兩個函數(shù),然后將和代入,看哪個算出的數(shù)據(jù)接近實際數(shù)據(jù)哪個就更適合作為與的函數(shù)模型.(2)根據(jù)(1)可得,利用二次函數(shù)的性質(zhì)求最大利潤.【小問1詳解】①若選擇作為與的函數(shù)模型,將的坐標(biāo)分別帶入,得解得此時,當(dāng)時,,當(dāng)時,,與表格中的和相差較大,所以不適合作為與的函數(shù)模型.②若選擇作為與的函數(shù)模型,將的坐標(biāo)分別帶入,得解得此時,當(dāng)時,,當(dāng)時,,剛好與表格中的和相符合,所以更適合作為與的函數(shù)模型.【小問2詳解】由題可知,該果園最多120000棵該呂種果樹,所以確定的取值范圍為,令,則經(jīng)計算,當(dāng)時,取最大值(萬元),即,時(每畝約38棵),利潤最大.18、(1)0;(2)詳見解析;(3)存在,.【解題分析】(1)利用賦值法即求;(2)利用單調(diào)性的定義,由題可得,結(jié)合條件可得,即證;(3)利用賦值法可求,結(jié)合函數(shù)的單調(diào)性可把問題轉(zhuǎn)化為,是否存在實數(shù),使得或在恒成立,然后利用參變分離法即求.【小問1詳解】∵對任意的,,均有,令,則,∴;【小問2詳解】,且,則又,對任意的均有,∴,∴∴函數(shù)在上單調(diào)遞增.【小問3詳解】∵函數(shù)為奇函數(shù)且在上單調(diào)遞增,∴函數(shù)在上單調(diào)遞增,令,可得,令,可得,又,∴,又函數(shù)在上單調(diào)遞增,在上單調(diào)遞增,∴由,可得或,即是否存在實數(shù),使得或?qū)θ我獾暮愠闪?,令,則,則對于恒成立等價于在恒成立,即在恒成立,又當(dāng)時,,故不存在實數(shù),使得恒成立,對于對任意的恒成立,等價于在恒成立,由,可得在恒成立,又,在上單調(diào)遞減,∴,綜上可得,存在使得對任意的恒成立.【題目點撥】關(guān)鍵點點睛:本題第二問的關(guān)鍵是配湊,然后利用條件可證;第三問的關(guān)鍵是轉(zhuǎn)化為否存在實數(shù),使得或在恒成立,再利用參變分離法解決.19、(1)單調(diào)遞減區(qū)間為;對稱軸為,;對稱中心為,;(2)【解題分析】(1)首先化簡函數(shù)解析式得到,然后結(jié)合函數(shù)的圖象與性質(zhì)即可求出單調(diào)遞減區(qū)間,對稱軸和對稱中心;(2)由求得,即可求出值域.【題目詳解】(1)化簡可得,由,,可得,,∴函數(shù)的單調(diào)遞減區(qū)間為,令,可得,故函數(shù)的對稱軸為,;令,得,故函數(shù)的對稱中心為,(2)當(dāng)時,,∴,∴,∴函數(shù)的值域為20、(1)(2)【解題分析】(1)根據(jù)恒成立,計算可得的值;(2)將不等式恒成立轉(zhuǎn)化為在上恒成立,令,則轉(zhuǎn)化為,利用對勾函數(shù)的性質(zhì)求得的最大值即可.【小問1詳解】因為函數(shù)(其中且)是奇函數(shù),,即恒成立,即恒成立,所以恒成立,整理得恒成立,,解得或,當(dāng)時,顯然不成立,當(dāng)時,,由,可得或,,滿足是奇函數(shù),所以;【小問2詳解】對任意的,都有不等式恒成立,恒成立,即在上恒成立,即在上恒成立,令
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市電影院用地租賃合同范本
- 建筑鋁材施工合同副本
- 智慧能源合同施工承諾書
- 化學(xué)家經(jīng)紀(jì)人聘用協(xié)議
- 汽車站旁快餐店租賃合同
- 數(shù)據(jù)分析師聘用合同范本
- 挖運土方合同范本
- 職業(yè)擊劍教練聘用合同協(xié)議書
- 城市公園改造工程圍擋施工協(xié)議
- 公司個人收入證明范本(8篇)
- 交通運輸行業(yè)火災(zāi)安全預(yù)案
- 電氣工程施工應(yīng)急預(yù)案
- DB34∕T 4010-2021 水利工程外觀質(zhì)量評定規(guī)程
- 完整2024年國有企業(yè)管理人員處分條例專題課件
- 安全生產(chǎn)治本攻堅三年行動實施方案(2024-2026年) - 副本
- GB/T 32066-2024煤基費托合成液體石蠟
- GB/T 97.2-2002平墊圈倒角型A級
- 六年級上冊美術(shù)課件-第1課 建筑藝術(shù)的美 ▏人美版 (共20張PPT)
- 公路頂管穿越施工方案(中文)
- 樁基溶洞處理施工方案(注漿法
- 三元催化器型號
評論
0/150
提交評論