版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省南昌十中2024屆高一上數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數(shù)是偶函數(shù),則滿足的實數(shù)的取值范圍是A. B.C. D.2.設(shè)P是△ABC所在平面內(nèi)的一點,,則A. B.C. D.3.已知函數(shù)的值域為,那么實數(shù)的取值范圍是()A. B.[-1,2)C.(0,2) D.4.,,,則()A. B.C. D.5.如果角的終邊經(jīng)過點,則()A. B.C. D.6.在空間坐標(biāo)系中,點關(guān)于軸的對稱點為()A. B.C. D.7.函數(shù)的圖像的大致形狀是()A. B.C. D.8.將函數(shù)的圖象上各點的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到函數(shù)的圖象,則函數(shù)在上的最大值和最小值分別為A. B.C. D.9.設(shè)集合,集合,則等于()A(1,2) B.(1,2]C.[1,2) D.[1,2]10.在長方體中,,,則直線與平面所成角的正弦值為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.計算=_______________12.函數(shù),若為偶函數(shù),則最小的正數(shù)的值為______13.已知函數(shù)的圖象過原點,且無限接近直線,但又不與該直線相交,則______14.如圖,在三棱錐中,已知,,,,則三棱錐的體積的最大值是________.15.筒車是我國古代發(fā)明的一種水利灌溉工具,因其經(jīng)濟又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用.明朝科學(xué)家徐光啟在《農(nóng)政全書》中用圖1描繪了筒車的工作原理.假定在水流穩(wěn)定的情況下,筒車上的每一個盛水筒都做勻速圓周運動.如圖2,將筒車抽象為一個幾何圖形(圓),以筒車轉(zhuǎn)輪的中心為原點,過點的水平直線為軸建立如圖直角坐標(biāo)系.已知一個半徑為1.6m的筒車按逆時針方向每30s勻速旋轉(zhuǎn)一周,到水面的距離為0.8m.規(guī)定:盛水筒對應(yīng)的點從水中浮現(xiàn)(時的位置)時開始計算時間,且設(shè)盛水筒從點運動到點時所經(jīng)過的時間為(單位:s),且此時點距離水面的高度為(單位:m)(在水面下則為負數(shù)),則關(guān)于的函數(shù)關(guān)系式為___________,在水輪轉(zhuǎn)動的任意一圈內(nèi),點距水面的高度不低于1.6m的時長為___________s.16.已知函數(shù),若在區(qū)間上的最大值是,則_______;若在區(qū)間上單調(diào)遞增,則的取值范圍是___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,當(dāng)時,.(1)若函數(shù)的圖象過點,求此時函數(shù)的解析式;(2)若函數(shù)只有一個零點,求實數(shù)a的值.18.求值:(1)(2)2log310+log30.8119.計算下列各式的值:(1);(2).20.已知函數(shù),記.(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性,并說明理由;(3)是否存在實數(shù),使得的定義域為時,值域為?若存在,求出實數(shù)的取值范圍;若不存在,則說明理由.21.設(shè)函數(shù)(ω>0),且圖象的一個對稱中心到最近的對稱軸的距離為(1)求在上的單調(diào)區(qū)間;(2)若,且,求sin2x0的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】結(jié)合為偶函數(shù),建立等式,利用對數(shù)計算性質(zhì),計算m值,結(jié)合單調(diào)性,建立不等式,計算x范圍,即可【題目詳解】,,,,令,則,則,當(dāng),遞增,結(jié)合復(fù)合函數(shù)單調(diào)性單調(diào)遞增,故偶函數(shù)在上是增函數(shù),所以由,得,.【題目點撥】本道題考查了偶函數(shù)性質(zhì)和函數(shù)單調(diào)性知識,結(jié)合偶函數(shù),計算m值,利用單調(diào)性,建立關(guān)于x的不等式,即可2、B【解題分析】由向量的加減法運算化簡即可得解.【題目詳解】,移項得【題目點撥】本題主要考查了向量的加減法運算,屬于基礎(chǔ)題.3、B【解題分析】先求出函數(shù)的值域,而的值域為,進而得,由此可求出的取值范圍.【題目詳解】解:因為函數(shù)的值域為,而的值域為,所以,解得,故選:B【題目點撥】此題考查由分段函數(shù)的值域求參數(shù)的取值范圍,分段函數(shù)的值域等于各段上的函數(shù)的值域的并集是解此題的關(guān)鍵,屬于基礎(chǔ)題.4、B【解題分析】根據(jù)對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性即可得出,,的大小關(guān)系【題目詳解】,,,故選:5、D【解題分析】由三角函數(shù)的定義可求得的值.【題目詳解】由三角函數(shù)的定義可得.故選:D.【題目點撥】本題考查利用三角函數(shù)的定義求值,考查計算能力,屬于基礎(chǔ)題.6、C【解題分析】兩點關(guān)于軸對稱,則縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),豎坐標(biāo)互為相反數(shù),由此可直接得出結(jié)果.【題目詳解】解:兩點關(guān)于軸對稱,則縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),豎坐標(biāo)互為相反數(shù),所以點關(guān)于軸的對稱點的坐標(biāo)是.故選:C.7、D【解題分析】化簡函數(shù)解析式,利用指數(shù)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,即可得出答案.【題目詳解】根據(jù),是減函數(shù),是增函數(shù).在上單調(diào)遞減,在上單調(diào)遞增故選:D.【題目點撥】本題主要考查了根據(jù)函數(shù)表達式求函數(shù)圖象,解題關(guān)鍵是掌握指數(shù)函數(shù)圖象的特征,考查了分析能力和計算能力,屬于中檔題.8、A【解題分析】先化簡f(x),再結(jié)合函數(shù)圖象的伸縮變換,得到函數(shù)y=g(x)的解析式,進而根據(jù)正弦型函數(shù)最值的求法,求出函數(shù)的最大值與最小值【題目詳解】∵函數(shù),∴g(x)∵x∈∴4x∈∴當(dāng)4x時,g(x)取最大值1;當(dāng)4x時,g(x)取最小值故選A.9、B【解題分析】由指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì)可得、,再由交集的運算即可得解.【題目詳解】因為,,所以.故選:B.【題目點撥】本題考查了指數(shù)不等式的求解及對數(shù)函數(shù)性質(zhì)的應(yīng)用,考查了集合交集的運算,屬于基礎(chǔ)題.10、D【解題分析】如圖,連接交于點,連接,則結(jié)合已知條件可證得為直線與平面所成角,然后根據(jù)已知數(shù)據(jù)在求解即可【題目詳解】解:如圖,連接交于點,連接,因為長方體中,,所以四邊形為正方形,所以,,所以,因為平面,所以,因為,所以平面,所以為直線與平面所成角,因為,,所以,在中,,所以直線與平面所成角的正弦值為,故選:D【題目點撥】此題考查線面角的求法,考查空間想象能力和計算能力,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】原式考點:三角函數(shù)化簡與求值12、【解題分析】根據(jù)三角函數(shù)的奇偶性知應(yīng)可用誘導(dǎo)公式化為余弦函數(shù)【題目詳解】,其為偶函數(shù),則,,,其中最小的正數(shù)為故答案【題目點撥】本題考查三角函數(shù)的奇偶性,解題時直接利用誘導(dǎo)公式分析即可13、##0.75【解題分析】根據(jù)條件求出,,再代入即可求解.【題目詳解】因為的圖象過原點,所以,即.又因為的圖象無限接近直線,但又不與該直線相交,所以,,所以,所以故答案為:14、【解題分析】過作垂直于的平面,交于點,,作,通過三棱錐體積公式可得到,可分析出當(dāng)最大時所求體積最大,利用橢圓定義可確定最大值,由此求得結(jié)果.【題目詳解】過作垂直于的平面,交于點,作,垂足為,,當(dāng)取最大值時,三棱錐體積取得最大值,由可知:當(dāng)為中點時最大,則當(dāng)取最大值時,三棱錐體積取得最大值.又,在以為焦點的橢圓上,此時,,,,三棱錐體積最大值為.故答案為:.【題目點撥】關(guān)鍵點點睛:本題考查三棱錐體積最值的求解問題,解題關(guān)鍵是能夠?qū)⑺篌w積的最值轉(zhuǎn)化為線段長度最值的求解問題,通過確定線段最值得到結(jié)果.15、①.②.10【解題分析】根據(jù)給定信息,求出以O(shè)x為始邊,OP為終邊的角,求出點P的縱坐標(biāo)即可列出函數(shù)關(guān)系,再解不等式作答.【題目詳解】依題意,點到x軸距離為0.8m,而,則,從點經(jīng)s運動到點所轉(zhuǎn)過的角為,因此,以O(shè)x為始邊,OP為終邊的角為,點P的縱坐標(biāo)為,于是得點距離水面的高度,由得:,而,即,解得,對于k的每個取值,,所以關(guān)于的函數(shù)關(guān)系式為,水輪轉(zhuǎn)動的任意一圈內(nèi),點距水面的高度不低于1.6m的時長為10s.故答案為:;10【題目點撥】關(guān)鍵點睛:涉及三角函數(shù)實際應(yīng)用問題,探求動點坐標(biāo),找出該點所在射線為終邊對應(yīng)的角是關(guān)鍵,特別注意,始邊是x軸非負半軸.16、①.②.【解題分析】根據(jù)定義域得,再得到取最大值的條件求解即可;先得到一般性的單調(diào)增區(qū)間,再根據(jù)集合之間的關(guān)系求解.【題目詳解】因為,且在此區(qū)間上的最大值是,所以因為f(x)max=2tan=,所以tan==,即ω=由,得令,得,即在區(qū)間上單調(diào)遞增又因在區(qū)間上單調(diào)遞增,所以<,即所以的取值范圍是故答案為:1,三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或.【解題分析】(1)由計算;(2)只有一個解,由對數(shù)函數(shù)性質(zhì)轉(zhuǎn)化為方程只有一個正根,分,和討論【題目詳解】(1),當(dāng)時,.函數(shù)的圖象過點,,解得,此時函數(shù).(2),∵函數(shù)只有一個零點,只有一個正解,∴當(dāng)時,,滿足題意;當(dāng)時,只有一個正根,若,解得,此時,滿足題意;若方程有兩個相異實根,則兩根之積為,此時方程有一個正根,符合題意;綜上,或.【題目點撥】本題考查函數(shù)零點與方程根的分布問題.解題時注意函數(shù)的定義域,在轉(zhuǎn)化時要正確確定方程根的范圍,對多項式方程,要按最高次項系數(shù)為0和不為0進行分類討論18、(1)(2)4【解題分析】(1)利用分數(shù)指數(shù)冪的性質(zhì)運算即可;(2)利用對數(shù)的運算性質(zhì)計算可得結(jié)果.試題解析:(1),(2)2log310+log30.81=19、(1)(2)【解題分析】(1)根據(jù)指數(shù)運算法則化簡求值;(2)根據(jù)指數(shù)、對數(shù)的運算法則化簡求值.【小問1詳解】【小問2詳解】20、(1);(2)奇函數(shù),理由見解析;(3)不存在,理由見解析.【解題分析】(1)分別求f(x)和g(x)定義域,F(xiàn)(x)為這兩個定義域的交集;(2)先判斷定義域是否關(guān)于原點對稱,再判斷F(-x)與F(x)的關(guān)系;(3)先根據(jù)定義域和值域求出m,n,a的范圍,再利用單調(diào)性將問題轉(zhuǎn)化為方程有解問題.【小問1詳解】由題意知要使有意義,則有,得所以函數(shù)的定義域為:【小問2詳解】由(1)知函數(shù)F(x)的定義域為:,關(guān)于原點對稱,函數(shù)為上的奇函數(shù).【小問3詳解】,假設(shè)存在這樣的實數(shù),則由可知令,則在上遞減,在上遞減,是方程,即有兩個在上的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版二手房獨家授權(quán)銷售合同3篇
- 2025年度出租車充電樁建設(shè)與維護合同3篇
- 二零二五年酒店宴會部經(jīng)理招聘與服務(wù)質(zhì)量提升合同3篇
- 二零二五版房產(chǎn)中介傭金結(jié)算及售后服務(wù)合同范本3篇
- 2024年船舶制造與維修合同
- 2025年新型紗窗產(chǎn)品研發(fā)與知識產(chǎn)權(quán)保護協(xié)議2篇
- 2025年散裝糧食海運協(xié)議6篇
- 專業(yè)質(zhì)量檢測服務(wù)工程協(xié)議樣本版
- 二零二五版合同部合同管理流程再造與效率提升合同3篇
- 二零二五年度消防設(shè)施安全檢測與維護服務(wù)協(xié)議
- 閱讀理解(專項訓(xùn)練)-2024-2025學(xué)年湘少版英語六年級上冊
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊 期末綜合試卷(含答案)
- 無創(chuàng)通氣基本模式
- 飛行原理(第二版) 課件 第4章 飛機的平衡、穩(wěn)定性和操縱性
- 暨南大學(xué)珠海校區(qū)財務(wù)辦招考財務(wù)工作人員易考易錯模擬試題(共500題)試卷后附參考答案
- 羊水少治療護理查房
- 中華人民共和國保守國家秘密法實施條例培訓(xùn)課件
- 管道坡口技術(shù)培訓(xùn)
- OQC培訓(xùn)資料教學(xué)課件
- 2024年8月CCAA國家注冊審核員OHSMS職業(yè)健康安全管理體系基礎(chǔ)知識考試題目含解析
- 體育賽事組織與實施操作手冊
評論
0/150
提交評論