山東省滕州市2024屆高一上數(shù)學期末考試試題含解析_第1頁
山東省滕州市2024屆高一上數(shù)學期末考試試題含解析_第2頁
山東省滕州市2024屆高一上數(shù)學期末考試試題含解析_第3頁
山東省滕州市2024屆高一上數(shù)學期末考試試題含解析_第4頁
山東省滕州市2024屆高一上數(shù)學期末考試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省滕州市2024屆高一上數(shù)學期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中,與函數(shù)有相同圖象的一個是A. B.C. D.2.為了得到函數(shù)的圖象,只需把函數(shù)的圖象()A.向左平行移動個單位長度 B.向右平行移動個單位長度C.向左平行移動個單位長度 D.向右平行移動個單位長度3.已知函數(shù)的上單調(diào)遞減,則的取值范圍是()A. B.C. D.4.如圖,把邊長為4的正方形ABCD沿對角線AC折起,當直線BD和平面ABC所成的角為時,三棱錐的體積為()A. B.C. D.5.已知,,,則的大小關(guān)系為A. B.C. D.6.已知函數(shù)為偶函數(shù),且在上單調(diào)遞減,則的解集為A. B.C. D.7.為了得到函數(shù)的圖象,只需將余弦曲線上所有的點A.向右平移個單位 B.向左平移個單位C向右平移個單位 D.向左平移個單位8.如圖,,下列等式中成立的是()A. B.C. D.9.形如的函數(shù)因其函數(shù)圖象類似于漢字中的“囧”字,故我們把其生動地稱為“囧函數(shù)”.若函數(shù)(且)有最小值,則當時的“囧函數(shù)”與函數(shù)的圖象交點個數(shù)為A. B.C. D.10.已知函數(shù)若曲線與直線的交點中,相鄰交點的距離的最小值為,則的最小正周期為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.《九章算術(shù)》是中國古代的數(shù)學名著,其中《方田》一章涉及到了弧田面積的計算問題,如圖所示,弧田是由弧AB和弦AB所圍成的圖中陰影部分若弧田所在圓的半徑為1,圓心角為,則此弧田的面積為____________.12.已知命題“?x∈R,e?x≥a”13.如下圖所示的正四棱臺的上底面邊長為2,下底面邊長為8,高為3214.將函數(shù)的圖象先向右平移個單位長度,得到函數(shù)________________的圖象,再把圖象上各點橫坐標縮短到原來的(縱坐標不變),得到函數(shù)________________的圖象15.已知直線經(jīng)過點,且與直線平行,則直線的方程為__________16.函數(shù)的零點個數(shù)是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.若向量的最大值為(1)求的值及圖像的對稱中心;(2)若不等式在上恒成立,求的取值范圍18.已知角的終邊經(jīng)過點,求下列各式的值:(1);(2)19.為持續(xù)推進“改善農(nóng)村人居環(huán)境,建設宜居美麗鄉(xiāng)村”,某村委計劃在該村廣場旁一矩形空地進行綠化.如圖所示,兩塊完全相同的長方形種植綠草坪,草坪周圍(斜線部分)均擺滿寬度相同的花,已知兩塊綠草坪的面積均為400平方米.(1)若矩形草坪的長比寬至少多9米,求草坪寬的最大值;(2)若草坪四周及中間的花壇寬度均為2米,求整個綠化面積的最小值.20.在三棱錐中,平面平面,,,分別是棱,上的點(1)為的中點,求證:平面平面.(2)若,平面,求的值.21.已知函數(shù);(1)若,使得成立,求的集合(2)已知函數(shù)的圖象關(guān)于點對稱,當時,.若對使得成立,求實數(shù)的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】逐一考查選項中的函數(shù)與所給的函數(shù)是否為同一個函數(shù)即可確定其圖象是否相同.【題目詳解】逐一考查所給的選項:A.,與題中所給函數(shù)的解析式不一致,圖象不相同;B.,與題中所給函數(shù)的解析式和定義域都一致,圖象相同;C.的定義域為,與題中所給函數(shù)的定義域不一致,圖象不相同;D.的定義域為,與題中所給函數(shù)的定義域不一致,圖象不相同;故選B.【題目點撥】本題主要考查函數(shù)相等的概念,需要同時考查函數(shù)的定義域和函數(shù)的對應關(guān)系,屬于中等題.2、A【解題分析】根據(jù)三角函數(shù)圖象的變換求解即可【題目詳解】由題意,把函數(shù)的圖象向左平行移動個單位長度得到故選:A3、C【解題分析】利用二次函數(shù)的圖象與性質(zhì)得,二次函數(shù)f(x)在其對稱軸左側(cè)的圖象下降,由此得到關(guān)于a的不等關(guān)系,從而得到實數(shù)a的取值范圍【題目詳解】當時,,顯然適合題意,當時,,解得:,綜上:的取值范圍是故選:C【題目點撥】本小題主要考查函數(shù)單調(diào)性的應用、二次函數(shù)的性質(zhì)、不等式的解法等基礎知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎題4、C【解題分析】取的中點為,連接,過作的垂線,垂足為,可以證明平面、平面,求出的面積后利用公式求出三棱錐的體積.【題目詳解】取的中點為,連接,過作的垂線,垂足為.因為為等腰直角三角形,故,同理,而,故平面,而平面,故平面平面,因為平面平面,平面,故平面,故為直線BD和平面ABC所成的角,所以.在等腰直角形中,因為,,故,同理,故為等邊三角形,故.故.故選:C.【題目點撥】思路點睛:線面角的構(gòu)造,往往需要根據(jù)面面垂直來構(gòu)建線面垂直,而后者來自線線垂直,注意對稱的圖形蘊含著垂直關(guān)系,另外三棱錐體積的計算,需選擇合適的頂點和底面.5、A【解題分析】利用利用等中間值區(qū)分各個數(shù)值的大小【題目詳解】;;故故選A【題目點撥】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性時要根據(jù)底數(shù)與的大小區(qū)別對待6、B【解題分析】根據(jù)為偶函數(shù),可得;根據(jù)在上遞減得;然后解一元二次不等式可得【題目詳解】解:為偶函數(shù),所以,即,,由在上單調(diào)遞減,所以,,可化為,即,解得或故選:【題目點撥】本題主要考查奇偶性與單調(diào)性的應用以及一元二次不等式的解法,還考查了運算求解的能力,屬于中檔題.7、C【解題分析】利用函數(shù)的圖象變換規(guī)律,得出結(jié)論【題目詳解】把余弦曲線上所有的點向右平行移動個單位長度,可得函數(shù)的圖象,故選C【題目點撥】本題主要考查函數(shù)的圖象變換規(guī)律,屬于基礎題8、B【解題分析】本題首先可結(jié)合向量減法的三角形法則對已知條件中的進行化簡,化簡為然后化簡并代入即可得出答案【題目詳解】因為,所以,所以,即,故選B【題目點撥】本題考查的知識點是平面向量的基本定理,考查向量減法的三角形法則,考查數(shù)形結(jié)合思想與化歸思想,是簡單題9、C【解題分析】當時,,而有最小值,故.令,,其圖像如圖所示:共4個不同的交點,選C.點睛:考慮函數(shù)圖像的交點的個數(shù),關(guān)鍵在于函數(shù)圖像的正確刻畫,注意利用函數(shù)的奇偶性來簡化圖像的刻畫過程.10、D【解題分析】將函數(shù)化簡,根據(jù)曲線y=f(x)與直線y=1的交點中,相鄰交點的距離的最小值為,即ωx2kπ或ωx2kπ,k∈Z,建立關(guān)系,可得ω的值,即得f(x)的最小正周期【題目詳解】解:函數(shù)f(x)=cosωx+sinωx,ω>0,x∈R化簡可得:f(x)sin(ωx)∵曲線y=f(x)與直線y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故選D【題目點撥】本題考查了和差公式、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的方程的解法,考查了推理能力與計算能力,屬于中檔題二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】根據(jù)題意所求面積,再根據(jù)扇形和三角形面積公式,進行求解即可.【題目詳解】易知為等腰三角形,腰長為,底角為,,所以,弧田的面積即圖中陰影部分面積,根據(jù)扇形面積及三角形面積可得:所以.故答案為:.12、a≤0【解題分析】根據(jù)?x∈R,e?x≥a成立,【題目詳解】因為?x∈R,e所以e?則a≤0,故答案為:a≤013、6【解題分析】如下圖所示,O'B'=2,OM=214、①.②.【解題分析】根據(jù)三角函數(shù)的圖象變換可得變換后函數(shù)的解析式.【題目詳解】由三角函數(shù)的圖象變換可知,函數(shù)的圖象先向右平移可得,再把圖象上各點橫坐標縮短到原來的(縱坐標不變)可得,故答案為:;15、【解題分析】設與直線平行的直線,將點代入得.即所求方程為16、3【解題分析】令f(x)=0求解即可.【題目詳解】,方程有三個解,故f(x)有三個零點.故答案為:3.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)先利用向量的數(shù)量積公式和倍角公式對函數(shù)式進行化簡,再利用兩倍角公式以及兩角差的正弦公式進行整理,然后根據(jù)最大值為解出的值,最后根據(jù)正弦函數(shù)的性質(zhì)求得函數(shù)的對稱中心;(2)首先通過的取值范圍來確定函數(shù)的范圍,再根據(jù)不等式在上恒成立,推斷出,最后計算得出結(jié)果【題目詳解】因為的最大值為,所以,由得所以的對稱中心為;(2)因為,所以即,因為不等式在上恒成立,所以即解得,的取值范圍為【題目點撥】本題考查了向量的相關(guān)性質(zhì)以及三角函數(shù)相關(guān)性質(zhì),主要考查了向量的乘法、三角函數(shù)的對稱性、三角恒等變換、三角函數(shù)的值域等,屬于中檔題.的對稱中心為18、(1);(2)【解題分析】(1)先求任意角的三角函數(shù)的定義求出的值,然后利用誘導公式化簡,再代值計算即可,(2)利用誘導公式化簡即可【題目詳解】∵角的終邊經(jīng)過點,∴,,(1)原式(2)原式19、(1)最大值為16米;(2)最小值為平方米.【解題分析】(1)設草坪的寬為x米,長為y米,依題意列出不等關(guān)系,求解即可;(2)表示,利用均值不等式,即得最小值.【題目詳解】(1)設草坪的寬為x米,長為y米,由面積均為400平方米,得.因為矩形草坪的長比寬至少大9米,所以,所以,解得.又,所以.所以寬的最大值為16米.(2)記整個的綠化面積為S平方米,由題意可得(平方米)當且僅當米時,等號成立.所以整個綠化面積的最小值為平方米.20、(1)證明見解析;(2)【解題分析】(1)根據(jù)等腰三角形的性質(zhì),證得,由面面垂直的性質(zhì)定理,證得平面,進而證得平面平面.(2)根據(jù)線面平行的性質(zhì)定理,證得,平行線分線段成比例,由此求得的值.【題目詳解】(1),為的中點,所以.又因為平面平面,平面平面,且平面,所以平面,又平面,所以平面平面.(2)∵平面,面,面面∴,∴.【題目點撥】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查線面平行的性質(zhì)定理,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)(2)【解題分析】(1)根據(jù)的值域列不等式,由此求得的取值范圍.(2)先求得在時的值域,對進行分類討論,由此求得的取值范圍.【小問1詳解】的值域為,所以,,,所以.所以的取值范圍是.【小問2詳解】由(1),當時,所以在時的值域為記函數(shù)的值域為.若對任意的,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論