版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆貴州省畢節(jié)市黔西縣樹立中學高一數(shù)學第一學期期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,,若,,則()A. B.C. D.2.函數(shù)在區(qū)間上的所有零點之和等于()A.-2 B.0C.3 D.23.用a,b,c表示空間中三條不同的直線,γ表示平面,給出下列命題:①若a⊥b,b⊥c,則a∥c;②若a∥b,a∥c,則b∥c;③若a∥γ,b∥γ,則a∥b其中真命題的序號是()A.①② B.③C.①③ D.②4.已知,條件:,條件:,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.農(nóng)業(yè)農(nóng)村部于2021年2月3日發(fā)布信息:全國按照主動預防、內(nèi)外結(jié)合、分類施策、有效處置的總體要求,全面排查蝗災隱患.為了做好蝗蟲防控工作,完善應急預案演練,專家假設(shè)蝗蟲的日增長率為6%,最初有只,則大約經(jīng)過()天能達到最初的1200倍.(參考數(shù)據(jù):,,,)A.122 B.124C.130 D.1366.函數(shù)的定義域為,值域為,則的取值范圍是()A. B.C. D.7.已知集合A=,B=,則A.AB= B.ABC.AB D.AB=R8.為了得到函數(shù)的圖象,只要把函數(shù)圖象上所有的點()A.橫坐標伸長到原來的2倍,縱坐標不變B.橫坐標縮短到原來的倍,縱坐標不變C.縱坐標伸長到原來的2倍,橫坐標不變D.縱坐標縮短到原來的倍,橫坐標不變9.已知函數(shù)為偶函數(shù),且在上單調(diào)遞增,,則不等式的解集為()A. B.C. D.10.古希臘數(shù)學家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,著作中有這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)(且)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.已知,動點滿足,則動點軌跡與圓位置關(guān)系是()A.外離 B.外切C.相交 D.內(nèi)切二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,正方形ABCD中,M,N分別是BC,CD中點,若,則______.12.已知,,則的最小值是___________.13.已知函數(shù),且,則__________14.關(guān)于函數(shù)有下述四個結(jié)論:①是偶函數(shù)②在區(qū)間單調(diào)遞增③的最大值為1④在有4個零點其中所有正確結(jié)論的編號是______.15.已知冪函數(shù)的圖象過點,則________16.函數(shù),的圖象恒過定點P,則P點的坐標是_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,已知為線段的中點,頂點,的坐標分別為,.(Ⅰ)求線段的垂直平分線方程;(Ⅱ)若頂點的坐標為,求垂心的坐標.18.人口問題是世界普遍關(guān)注的問題,通過對若干個大城市的統(tǒng)計分析,針對人口密度分布進行模擬研究,發(fā)現(xiàn)人口密度與到城市中心的距離之間呈現(xiàn)負指數(shù)關(guān)系.指數(shù)模型是經(jīng)典的城市人口密度空間分布的模型之一,該模型的計算是基于圈層距離法獲取距城市中心距離和人口密度數(shù)據(jù)的,具體而言就是以某市中心位置為圓心,以不同的距離為半徑劃分圈層,測量和分析不同圈層中的人口狀況.其中x是圈層序號,將圈層序號是x的區(qū)域稱為“x環(huán)”(時,1環(huán)表示距離城市中心0~3公里的圈層;時,2環(huán)表示距離城市中心3~6公里的圈層;以此類推);是城市中心的人口密度(單位:萬人/平方公里),為x環(huán)的人口密度(單位:萬人/平方公里);b為常數(shù);.下表為某市2006年和2016年人口分布的相關(guān)數(shù)據(jù):年份b20062.20.1320162.30.10(1)求該市2006年2環(huán)處的人口密度(參考數(shù)據(jù):,結(jié)果保留一位小數(shù));(2)2016年該市某環(huán)處的人口密度為市中心人口密度的,求該環(huán)是這個城市的多少環(huán).(參考數(shù)據(jù):)19.已知函數(shù)f(1)求f-23(2)作出函數(shù)的簡圖;(3)由簡圖指出函數(shù)的值域;(4)由簡圖得出函數(shù)的奇偶性,并證明.20.降噪耳機主要有主動降噪耳機和被動降噪耳機兩種.其中主動降噪耳機的工作原理是:先通過微型麥克風采集周圍的噪聲,然后降噪芯片生成與噪聲振幅相同、相位相反的反向聲波來抵消噪聲(如圖所示).已知某噪聲的聲波曲線是,其中的振幅為2,且經(jīng)過點.(1)求該噪聲聲波曲線的解析式以及降噪芯片生成的降噪聲波曲線的解析式;(2)將函數(shù)圖象上各點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變得到函數(shù)的圖象.若銳角滿足,求的值.21.若=,是第四象限角,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】計算出向量的坐標,然后利用共線向量的坐標表示得出關(guān)于實數(shù)的等式,解出即可.【題目詳解】向量,,,又且,,解得.故選:C.【題目點撥】本題考查平面向量的坐標運算,考查共線向量的坐標表示,考查計算能力,屬于基礎(chǔ)題.2、C【解題分析】分析:首先確定函數(shù)的零點,然后求解零點之和即可.詳解:函數(shù)的零點滿足:,解得:,取可得函數(shù)在區(qū)間上的零點為:,則所有零點之和為.本題選擇C選項.點睛:本題主要考查三角函數(shù)的性質(zhì),函數(shù)零點的定義及其應用等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.3、D【解題分析】因為空間中,用a,b,c表示三條不同的直線,①中正方體從同一點出發(fā)的三條線,滿足已知但是a⊥c,所以①錯誤;②若a∥b,b∥c,則a∥c,滿足平行線公理,所以②正確;③平行于同一平面的兩直線的位置關(guān)系可能是平行、相交或者異面,所以③錯誤;故選D4、C【解題分析】分別求兩個命題下的集合,再根據(jù)集合關(guān)系判斷選項.【題目詳解】,則,,則,因為,所以是充分必要條件.故選:C5、A【解題分析】設(shè)經(jīng)過天后蝗蟲數(shù)量達到原來的倍,列出方程,結(jié)合對數(shù)的運算性質(zhì)即可求解【題目詳解】由題意可知,蝗蟲最初有只且日增長率為6%;設(shè)經(jīng)過n天后蝗蟲數(shù)量達到原來的1200倍,則,∴,∴,∵,∴大約經(jīng)過122天能達到最初的1200倍.故選:A.6、B【解題分析】觀察在上的圖象,從而得到的取值范圍.【題目詳解】解:觀察在上的圖象,當時,或,當時,,∴的最小值為:,的最大值為:,∴的取值范圍是故選:B【題目點撥】本題考查余弦函數(shù)的定義域和值域,余弦函數(shù)的圖象,考查數(shù)形結(jié)合思想,屬基礎(chǔ)題7、A【解題分析】由得,所以,選A點睛:對于集合的交、并、補運算問題,應先把集合化簡再計算,常常借助數(shù)軸或韋恩圖處理8、B【解題分析】直接利用三角函數(shù)伸縮變換法則得到答案.【題目詳解】為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點橫坐標縮短到原來的倍,縱坐標不變.故選:B9、A【解題分析】由題可得函數(shù)在上單調(diào)遞減,,且,再利用函數(shù)單調(diào)性即得.【題目詳解】因為函數(shù)為偶函數(shù)且在上單調(diào)逆增,,所以函數(shù)在上單調(diào)遞減,,且,所以,所以,解得或,即的取值范圍是.故選:A.10、C【解題分析】設(shè)動點P的坐標,利用已知條件列出方程,化簡可得點P的軌跡方程為圓,再判斷圓心距和半徑的關(guān)系即可得解.,詳解】設(shè),由,得,整理得,表示圓心為,半徑為的圓,圓的圓心為為圓心,為半徑的圓兩圓的圓心距為,滿足,所以兩個圓相交.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】以,為基底,由平面向量基本定理,列方程求解,即可得出結(jié)果.【題目詳解】設(shè),則,由于可得,解得,所以故答案為:【題目點撥】本題考查平面向量基本定理的運用,考查向量的加法運算,考查運算求解能力,屬于中檔題.12、【解題分析】化簡函數(shù),由,得到,結(jié)合三角函數(shù)的性質(zhì),即可求解.【題目詳解】由題意,函數(shù),因為,可得,當時,即時,函數(shù)取得最小值.故答案為:.13、或【解題分析】對分和兩類情況,解指數(shù)冪方程和對數(shù)方程,即可求出結(jié)果.【題目詳解】當時,因為,所以,所以,經(jīng)檢驗,滿足題意;當時,因為,所以,即,所以,經(jīng)檢驗,滿足題意.故答案為:或14、①③【解題分析】利用奇偶性定義可判斷①;時,可判斷②;分、時求出可判斷故③;時,由可判斷④.【題目詳解】因為,,所以①正確;當時,,當時,,,時,單調(diào)遞減,故②錯誤;當時,,;當時,,綜上的最大值為1,故③正確;時,由得,解得,由不存在零點,所以在有2個零點,故④錯誤.故答案為:①③.15、3【解題分析】先求得冪函數(shù)的解析式,再去求函數(shù)值即可.【題目詳解】設(shè)冪函數(shù),則,則,則,則故答案為:316、【解題分析】令,解得,且恒成立,所以函數(shù)的圖象恒過定點;故填.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解題分析】(1)根據(jù)中點坐標公式求中點坐標,根據(jù)斜率公式求斜率,最后根據(jù)點斜式求方程(2)根據(jù)垂心為高線的交點,先根據(jù)點斜式求兩條高線方程,再解方程組求交點坐標,即得垂心的坐標.試題解析:(Ⅰ)∵的中點是,直線的斜率是-3,線段中垂線的斜率是,故線段的垂直平分線方程是,即;(Ⅱ)∵,∴邊上的高所在線斜率∵∴邊上高所在直線的方程:,即同理∴邊上的高所在直線的方程:聯(lián)立和,得:,∴的垂心為18、(1)1.7(2)4【解題分析】(2)根據(jù)表中數(shù)據(jù),由求解;(2)根據(jù)2016年該市某環(huán)處的人口密度為市中心人口密度的,由求解.【小問1詳解】解:由表中數(shù)據(jù)得:;【小問2詳解】因為2016年該市某環(huán)處的人口密度為市中心人口密度的,所以,即,所以,解得,所以該環(huán)是這個城市的4環(huán).19、(1)f(-23)=-(2)作圖見解析;(3)[-1,1(4)f(x)為奇函數(shù),證明見解析.【解題分析】(1)根據(jù)對應區(qū)間,將自變量代入解析式求值即可.(2)應用五點法確定點坐標列表,再描點畫出函數(shù)圖象.(3)由(2)圖象直接寫出值域.(4)由(2)圖象判斷奇偶性,再應用奇偶性定義證明即可.【小問1詳解】由解析式知:f(-23)=【小問2詳解】由解析式可得:x-2-1012f(x)0-1010∴f(x)的圖象如下:【小問3詳解】由(2)知:f(x)的值域為[-1,1【小問4詳解】由圖知:f(x)為奇函數(shù),證明如下:當0<x<2,-2<-x<0時,f(-x)=(-x)當-2<x<0,0<-x<2時,f(-x)=-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 番禺2025版租賃市場房源代理服務合同
- 2024結(jié)款協(xié)議合同范本
- 二零二四年國際貨物銷售合同:FOB條款與運輸2篇
- 二零二五版高校畢業(yè)生就業(yè)指導與職業(yè)規(guī)劃服務合同6篇
- 二零二五版電影劇本改編與制作投資合同范本3篇
- 2024物聯(lián)網(wǎng)應用項目建設(shè)的合同標的
- 2025年度教育領(lǐng)域臨時工招聘及教學質(zhì)量合同4篇
- 2025年度自卸車租賃與基礎(chǔ)設(shè)施建設(shè)配套合同3篇
- 2024-2025學年高中歷史第六單元世界資本主義經(jīng)濟政策的調(diào)整第18課羅斯福新政習題含解析新人教版必修2
- 2024-2025學年高中英語Unit3FairnessforallSectionⅣUsingLanguage教師用書教案新人教版選修10
- 第7課《中華民族一家親》(第一課時)(說課稿)2024-2025學年統(tǒng)編版道德與法治五年級上冊
- 2024年醫(yī)銷售藥銷售工作總結(jié)
- 急診科十大護理課件
- 山東省濟寧市2023-2024學年高一上學期1月期末物理試題(解析版)
- GB/T 44888-2024政務服務大廳智能化建設(shè)指南
- 2025年上半年河南鄭州滎陽市招聘第二批政務輔助人員211人筆試重點基礎(chǔ)提升(共500題)附帶答案詳解
- 山東省濟南市歷城區(qū)2024-2025學年七年級上學期期末數(shù)學模擬試題(無答案)
- 國家重點風景名勝區(qū)登山健身步道建設(shè)項目可行性研究報告
- 投資計劃書模板計劃方案
- 《接觸網(wǎng)施工》課件 3.4.2 隧道內(nèi)腕臂安裝
- 2024-2025學年九年級語文上學期第三次月考模擬卷(統(tǒng)編版)
評論
0/150
提交評論