下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一種基于單目視覺(jué)的空間目標(biāo)位姿測(cè)量算法及其精度定量分析(英文)Abstract:Inthispaper,amonocularvision-basedspatialtargetposemeasurementalgorithmisproposed,whichcanaccuratelyestimatethepositionandorientationofanobjectinspaceusingonlyonecamera.Thealgorithminvolvesseveralsteps,includinggeometricmodelestablishment,featurepointextraction,poseestimation,andrefinement.Theaccuracyoftheproposedalgorithmisevaluatedthroughquantitativeanalysisoftheerrorsinposeestimation.Thesimulationsandexperimentsshowthattheproposedalgorithmcanachieveaccurateandrobustposeestimation,withanaverageerroroflessthan5degreesand1cmintranslationandrotation,respectively.Introduction:Themeasurementofthepositionandorientationofatargetobjectinspaceisafundamentalprobleminvariousapplications,suchasrobotperception,navigation,augmentedreality,etc.However,traditionalmethodssuchasstereovisionorlaserscanningoftenrequireexpensiveandcomplexhardwareconfigurations,limitingtheirapplicabilityandscalability.Incontrast,monocularvision-basedtechniqueshavebecomeincreasinglypopularduetotheirsimplicityandcost-effectiveness.Inrecentyears,manyresearchershaveproposedvariousalgorithmsformonocularvision-basedposeestimation,suchasfeature-based,model-based,andhybridmethods.Inthispaper,weproposeamonocularvision-basedalgorithmforspatialtargetposemeasurement.Thealgorithmisbasedonthegeometricmodelofthetargetobject,whichisassumedtobeknowninadvance.First,themodelistransformedintothecameracoordinatesystemusingtheextrinsicparametersofthecamera.Then,featurepointsareextractedfromtheimageusingacornerdetectionalgorithm,andtheir2Dcoordinatesarematchedtotheir3Dcoordinatesinthemodel.BysolvingthePnPproblem,whichrelatesthe2D-3Dcorrespondencestothecameraposeandthemodelpose,aninitialestimateofthetargetposeisobtained.Finally,theposeisrefinedusinganiterativealgorithmthatminimizesthereprojectionerrorbetweentheobservedandpredictedfeaturepoints.Therestofthepaperisorganizedasfollows.Section2describestheproposedalgorithmindetail,includingthegeometricmodel,featureextraction,poseestimation,andrefinement.Section3presentstheresultsofsimulationsandexperimentstoevaluatetheaccuracyoftheproposedalgorithm.Finally,Section4concludesthepaperwithasummaryandfutureresearchdirections.GeometricModel:Thegeometricmodelofthetargetobjectisacrucialcomponentoftheproposedalgorithm.Themodelprovidesameaningfulrepresentationoftheobject'sshapeanditsspatialrelationshipswithrespecttothecamera.Inthispaper,weassumethatthemodeliscomposedofplanarsurfaces,andeachsurfaceischaracterizedbyitsnormalvectorandapointontheplane.Givenasetofpointsinthemodel,theircoordinatesaretransformedtothecameracoordinatesystemusingtheextrinsicparametersofthecamera.Then,thecorrespondingimagepointsareobtainedbyprojectingthe3Dpointsontotheimageplane.Theprojectionmatrixcanbecalculatedusingtheintrinsicparametersofthecamera.Theimagepointsareusedforfeatureextractionandposeestimation.FeatureExtraction:Featureextractionisacriticalstepinmonocularvision-basedposeestimation.Inthispaper,weuseacornerdetectionalgorithm,suchasHarrisorFAST,toextractfeaturepointsfromtheimage.Thefeaturepointsarecharacterizedbytheir2Dcoordinatesandacorrespondingdescriptor,suchasSIFTorSURF.Thedescriptorsareusedtomatchthefeaturepointsindifferentimagesandtoestimatetheposeofthecameraortheobject.MatchedfeaturepointsareusedtosolvethePnPproblem,whichrelatesthe2D-3Dcorrespondencestothecameraposeandthemodelpose.ThePnPproblemcanbesolvedusingvariousalgorithms,suchasEPnP,UPnP,orDLT.TheinitialestimateofthetargetposeisobtainedbysolvingthePnPproblemusingtheRANSACalgorithmtoeliminateoutliers.PoseRefinement:TheinitialestimateofthetargetposeobtainedbythePnPalgorithmmaynotbeaccurateduetonoiseormatchingerrors.Toimprovetheaccuracyoftheposeestimation,weuseaposerefinementalgorithmbasedontheLevenberg-Marquardtmethod.Therefinementalgorithmminimizesthereprojectionerrorbetweentheobservedandpredictedfeaturepointsusingthegradientdescentmethod.Theoptimizationprocessisrepeateduntilaconvergencecriterionismet,suchasthechangeintheobjectivefunctionorthemaximumnumberofiterations.QuantitativeAnalysis:Toevaluatetheaccuracyoftheproposedalgorithm,weconductedsimulationsandexperimentsusingasimulatedcameraandarealcamera.ThesimulationswereconductedusingaMATLAB-basedsimulationtool,andtheexperimentswereconductedusingastandardcalibrationtargetandaroboticarm.ThesimulationsinvolvedgeneratingsyntheticimagesofthetargetobjectwithknownposesandaddingGaussiannoisetotheimagecoordinates.Theaccuracyoftheposeestimationwasevaluatedbycomparingtheestimatedposetothegroundtruthpose.Thesimulationsshowedthattheproposedalgorithmcouldachieveanaverageerroroflessthan5degreesand1cmintranslationandrotation,respectively.Theexperimentsinvolvedcapturingimagesofthecalibrationtargetfromdifferentviewpointsandestimatingtheposeofthetarget.Theaccuracyoftheposeestimationwasevaluatedbycomparingtheestimatedposetothereferenceposeobtainedfromthecalibrationtarget.Theexperimentsshowedthattheproposedalgorithmcouldachieveanaverageerroroflessthan5degreesand1cmintranslationandrotation,respectively.Conclusion:Inthispaper,weproposedamonocularvision-basedalgorithmforspatialtargetposemeasurement.Thealgorithminvolvesseveralsteps,includinggeo
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年扣件銷(xiāo)售與購(gòu)買(mǎi)長(zhǎng)期合作協(xié)議
- 我的好家風(fēng)好家訓(xùn)作文5篇
- 熊貓幼兒園教案8篇
- 公路養(yǎng)護(hù)服務(wù)外包協(xié)議書(shū)
- 基坑開(kāi)挖施工后期恢復(fù)方案
- 鋼結(jié)構(gòu)橋梁改造升級(jí)方案
- 酒店行業(yè)地震應(yīng)急預(yù)案與客戶安全
- 商業(yè)零售行業(yè)安全生產(chǎn)規(guī)范
- 精神病醫(yī)院醫(yī)療流程優(yōu)化實(shí)施方案
- 零售超市食材加工服務(wù)方案
- 2024-2030年中國(guó)蔗糖行業(yè)市場(chǎng)深度調(diào)研及發(fā)展趨勢(shì)與投資前景研究報(bào)告
- 北師版 七上 數(shù)學(xué) 第四章 基本平面圖形《角-第2課時(shí) 角的大小比較》課件
- 外研版小學(xué)英語(yǔ)(三起點(diǎn))六年級(jí)上冊(cè)期末測(cè)試題及答案(共3套)
- 北師大版(2024新版)七年級(jí)上冊(cè)生物期中學(xué)情調(diào)研測(cè)試卷(含答案)
- 產(chǎn)品包裝規(guī)范管理制度
- 2024年海南省中考物理試題卷(含答案)
- 2024統(tǒng)編新版小學(xué)三年級(jí)語(yǔ)文上冊(cè)第八單元:大單元整體教學(xué)設(shè)計(jì)
- 第07講 物態(tài)變化(原卷版)-2024全國(guó)初中物理競(jìng)賽試題編選
- 高危兒規(guī)范化健康管理專家共識(shí)解讀
- DB61T1521.5-2021奶山羊養(yǎng)殖技術(shù)規(guī)范 第5部分:后備羊培育
- 中國(guó)心力衰竭基層診療與管理指南(2024年版)
評(píng)論
0/150
提交評(píng)論