


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一種基于單目視覺的空間目標位姿測量算法及其精度定量分析(英文)Abstract:Inthispaper,amonocularvision-basedspatialtargetposemeasurementalgorithmisproposed,whichcanaccuratelyestimatethepositionandorientationofanobjectinspaceusingonlyonecamera.Thealgorithminvolvesseveralsteps,includinggeometricmodelestablishment,featurepointextraction,poseestimation,andrefinement.Theaccuracyoftheproposedalgorithmisevaluatedthroughquantitativeanalysisoftheerrorsinposeestimation.Thesimulationsandexperimentsshowthattheproposedalgorithmcanachieveaccurateandrobustposeestimation,withanaverageerroroflessthan5degreesand1cmintranslationandrotation,respectively.Introduction:Themeasurementofthepositionandorientationofatargetobjectinspaceisafundamentalprobleminvariousapplications,suchasrobotperception,navigation,augmentedreality,etc.However,traditionalmethodssuchasstereovisionorlaserscanningoftenrequireexpensiveandcomplexhardwareconfigurations,limitingtheirapplicabilityandscalability.Incontrast,monocularvision-basedtechniqueshavebecomeincreasinglypopularduetotheirsimplicityandcost-effectiveness.Inrecentyears,manyresearchershaveproposedvariousalgorithmsformonocularvision-basedposeestimation,suchasfeature-based,model-based,andhybridmethods.Inthispaper,weproposeamonocularvision-basedalgorithmforspatialtargetposemeasurement.Thealgorithmisbasedonthegeometricmodelofthetargetobject,whichisassumedtobeknowninadvance.First,themodelistransformedintothecameracoordinatesystemusingtheextrinsicparametersofthecamera.Then,featurepointsareextractedfromtheimageusingacornerdetectionalgorithm,andtheir2Dcoordinatesarematchedtotheir3Dcoordinatesinthemodel.BysolvingthePnPproblem,whichrelatesthe2D-3Dcorrespondencestothecameraposeandthemodelpose,aninitialestimateofthetargetposeisobtained.Finally,theposeisrefinedusinganiterativealgorithmthatminimizesthereprojectionerrorbetweentheobservedandpredictedfeaturepoints.Therestofthepaperisorganizedasfollows.Section2describestheproposedalgorithmindetail,includingthegeometricmodel,featureextraction,poseestimation,andrefinement.Section3presentstheresultsofsimulationsandexperimentstoevaluatetheaccuracyoftheproposedalgorithm.Finally,Section4concludesthepaperwithasummaryandfutureresearchdirections.GeometricModel:Thegeometricmodelofthetargetobjectisacrucialcomponentoftheproposedalgorithm.Themodelprovidesameaningfulrepresentationoftheobject'sshapeanditsspatialrelationshipswithrespecttothecamera.Inthispaper,weassumethatthemodeliscomposedofplanarsurfaces,andeachsurfaceischaracterizedbyitsnormalvectorandapointontheplane.Givenasetofpointsinthemodel,theircoordinatesaretransformedtothecameracoordinatesystemusingtheextrinsicparametersofthecamera.Then,thecorrespondingimagepointsareobtainedbyprojectingthe3Dpointsontotheimageplane.Theprojectionmatrixcanbecalculatedusingtheintrinsicparametersofthecamera.Theimagepointsareusedforfeatureextractionandposeestimation.FeatureExtraction:Featureextractionisacriticalstepinmonocularvision-basedposeestimation.Inthispaper,weuseacornerdetectionalgorithm,suchasHarrisorFAST,toextractfeaturepointsfromtheimage.Thefeaturepointsarecharacterizedbytheir2Dcoordinatesandacorrespondingdescriptor,suchasSIFTorSURF.Thedescriptorsareusedtomatchthefeaturepointsindifferentimagesandtoestimatetheposeofthecameraortheobject.MatchedfeaturepointsareusedtosolvethePnPproblem,whichrelatesthe2D-3Dcorrespondencestothecameraposeandthemodelpose.ThePnPproblemcanbesolvedusingvariousalgorithms,suchasEPnP,UPnP,orDLT.TheinitialestimateofthetargetposeisobtainedbysolvingthePnPproblemusingtheRANSACalgorithmtoeliminateoutliers.PoseRefinement:TheinitialestimateofthetargetposeobtainedbythePnPalgorithmmaynotbeaccurateduetonoiseormatchingerrors.Toimprovetheaccuracyoftheposeestimation,weuseaposerefinementalgorithmbasedontheLevenberg-Marquardtmethod.Therefinementalgorithmminimizesthereprojectionerrorbetweentheobservedandpredictedfeaturepointsusingthegradientdescentmethod.Theoptimizationprocessisrepeateduntilaconvergencecriterionismet,suchasthechangeintheobjectivefunctionorthemaximumnumberofiterations.QuantitativeAnalysis:Toevaluatetheaccuracyoftheproposedalgorithm,weconductedsimulationsandexperimentsusingasimulatedcameraandarealcamera.ThesimulationswereconductedusingaMATLAB-basedsimulationtool,andtheexperimentswereconductedusingastandardcalibrationtargetandaroboticarm.ThesimulationsinvolvedgeneratingsyntheticimagesofthetargetobjectwithknownposesandaddingGaussiannoisetotheimagecoordinates.Theaccuracyoftheposeestimationwasevaluatedbycomparingtheestimatedposetothegroundtruthpose.Thesimulationsshowedthattheproposedalgorithmcouldachieveanaverageerroroflessthan5degreesand1cmintranslationandrotation,respectively.Theexperimentsinvolvedcapturingimagesofthecalibrationtargetfromdifferentviewpointsandestimatingtheposeofthetarget.Theaccuracyoftheposeestimationwasevaluatedbycomparingtheestimatedposetothereferenceposeobtainedfromthecalibrationtarget.Theexperimentsshowedthattheproposedalgorithmcouldachieveanaverageerroroflessthan5degreesand1cmintranslationandrotation,respectively.Conclusion:Inthispaper,weproposedamonocularvision-basedalgorithmforspatialtargetposemeasurement.Thealgorithminvolvesseveralsteps,includinggeo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年氯氟氰菊酯項目發(fā)展計劃
- 胸腔護理專業(yè)知識與實操指南
- 雅克促銷員培訓(xùn)
- 造影檢查術(shù)前術(shù)后護理
- 輕度肺部感染的護理查房
- 腹腔鏡膽囊切除病人護理
- 船舶碰撞培訓(xùn)課件
- 裝修工程知識培訓(xùn)課件
- 2025年數(shù)字仿真計算機項目合作計劃書
- 蘇繡工藝品企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 2024春四年級上下冊音樂測試專項測試題及答案
- 多發(fā)傷骨折護理查房
- 中建二測考試題庫及答案
- 華東師范大學《外國人文經(jīng)典(下)》2021-2022學年第一學期期末試卷
- 基礎(chǔ)護理及病房管理
- 辦理拆遷事項委托書
- 2023年新疆事業(yè)單位開展招聘考試真題
- 學校班主任談心制度實施方案
- 2024年《工會法》知識競賽題庫及答案
- 煤礦事故現(xiàn)場處置管理制度
- CRISPR-Cas9-基因編輯技術(shù)簡介
評論
0/150
提交評論