版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
備考2014導數(shù)題型與方法解析第1頁共6頁導數(shù)題型分析及解題方法一、考試內(nèi)容導數(shù)的概念,導數(shù)的幾何意義,幾種常見函數(shù)的導數(shù);兩個函數(shù)的和、差、基本導數(shù)公式,利用導數(shù)研究函數(shù)的單調(diào)性和極值,函數(shù)的最大值和最小值。二、熱點題型分析題型一:利用導數(shù)研究函數(shù)的極值、最值。1.在區(qū)間上的最大值是2題型二:利用導數(shù)幾何意義求切線方程1.若曲線在P點處的切線平行于直線,則P點的坐標為(1,0)2.若曲線的一條切線與直線垂直,則的方程為題型三:利用導數(shù)研究函數(shù)的單調(diào)性,極值、最值1.已知函數(shù)的切線方程為y=3x+1(Ⅰ)若函數(shù)處有極值,求的表達式;(Ⅱ)在(Ⅰ)的條件下,求函數(shù)在[-3,1]上的最大值;(Ⅲ)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實數(shù)b的取值范圍解:(1)由過的切線方程為:①②而過①②故∵③由①②③得a=2,b=-4,c=5∴(2)當又在[-3,1]上最大值是13。(3)y=f(x)在[-2,1]上單調(diào)遞增,又由①知2a+b=0。依題意在[-2,1]上恒有≥0,即①當;②當;③當綜上所述,參數(shù)b的取值范圍是題型四:利用導數(shù)研究函數(shù)的圖象1.如右圖:是f(x)的導函數(shù),的圖象如右圖所示,則f(x)的圖象只可能是(D)(A)(B)(C)(D)2.函數(shù)(A)xxyo4-424-42-2-2xyo4-424-42-2-2xyy4o-424-42-2-26666yx-4-2o42243.方程(B)A、0B、1C、2D、3題型五:利用單調(diào)性、極值、最值情況,求參數(shù)取值范圍1.已知函數(shù)f(x)=x3+ax2+bx+c在x=-與x=1時都取得極值(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間(2)若對x〔-1,2〕,不等式f(x)c2恒成立,求c的取值范圍。解:(1)f(x)=x3+ax2+bx+c,f(x)=3x2+2ax+b由f()=,f(1)=3+2a+b=0得a=,b=-2f(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:x(-,-)-(-,1)1(1,+)f(x)+0-0+f(x)極大值極小值所以函數(shù)f(x)的遞增區(qū)間是(-,-)與(1,+),遞減區(qū)間是(-,1)(2)f(x)=x3-x2-2x+c,x〔-1,2〕,當x=-時,f(x)=+c為極大值,而f(2)=2+c,則f(2)=2+c為最大值。要使f(x)c2(x〔-1,2〕)恒成立,只需c2f(2)=2+c,解得c-1或c2題型六:利用導數(shù)研究方程的根1.已知平面向量=(,-1).=(,).(1)若存在不同時為零的實數(shù)k和t,使=+(t2-3),=-k+t,⊥,試求函數(shù)關系式k=f(t);(2)據(jù)(1)的結論,討論關于t的方程f(t)-k=0的解的情況.解:(1)∵⊥,∴=0即[+(t2-3)]·(-k+t)=0.整理后得-k+[t-k(t2-3)]+(t2-3)·=0∵=0,=4,=1,∴上式化為-4k+t(t2-3)=0,即k=t(t2-3)(2)討論方程t(t2-3)-k=0的解的情況,可以看作曲線f(t)=t(t2-3)與直線y=k的交點個數(shù).于是f′(t)=(t2-1)=(t+1)(t-1).令f′(t)=0,解得t1=-1,t2=1.當t變化時,f′(t)、f(t)的變化情況如下表:t(-∞,-1)-1(-1,1)1(1,+∞)f′(t)+0-0+F(t)↗極大值↘極小值↗當t=-1時,f(t)有極大值,f(t)極大值=.當t=1時,f(t)有極小值,f(t)極小值=-函數(shù)f(t)=t(t2-3)的圖象如圖13-2-1所示,可觀察出:(1)當k>或k<-時,方程f(t)-k=0有且只有一解;(2)當k=或k=-時,方程f(t)-k=0有兩解;(3)當-<k<時,方程f(t)-k=0有三解.題型七:導數(shù)與不等式的綜合1.設在上是單調(diào)函數(shù).(1)求實數(shù)的取值范圍;(2)設≥1,≥1,且,求證:.解:(1)若在上是單調(diào)遞減函數(shù),則須這樣的實數(shù)a不存在.故在上不可能是單調(diào)遞減函數(shù).若在上是單調(diào)遞增函數(shù),則≤,由于.從而0<a≤3.(2)方法1、可知在上只能為單調(diào)增函數(shù).若1≤,則若1≤矛盾,故只有成立.方法2:設,兩式相減得≥1,u≥1,,題型八:導數(shù)在實際中的應用1.統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量(升)關于行駛速度(千米/小時)的函數(shù)解析式可以表示為:已知甲、乙兩地相距100千米。(I)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?(II)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?解:(I)當時,汽車從甲地到乙地行駛了小時, 要耗沒(升)。 (II)當速度為千米/小時時,汽車從甲地到乙地行駛了小時,設耗油量為升, 依題意得 令得 當時,是減函數(shù); 當時,是增函數(shù)。 當時,取到極小值 因為在上只有一個極值,所以它是最小值。 答:當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地耗油17.5升。當汽車以80千米/小時的速度勻速行駛時,從甲地到乙地耗油最少,最少為11.25升。題型九:導數(shù)與向
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年綠色建筑材料交易合同規(guī)范匯編3篇
- 2025版微粒貸逾期8萬元債權轉(zhuǎn)讓服務合同3篇
- 2025版外債借款合同匯率風險與應對措施3篇
- 二零二五年度菜鳥驛站快遞業(yè)務數(shù)據(jù)分析合同3篇
- 二零二五年度多功能木方模板設計與制造服務合同4篇
- 2025年學生就業(yè)實習合同
- 2025年名譽權質(zhì)押合同
- 2025年合作加盟代理合資經(jīng)營合同
- 二零二五版國際貨物檢驗鑒定服務合同(木材)3篇
- 2025年家居中介代理協(xié)議
- 化學-河南省TOP二十名校2025屆高三調(diào)研考試(三)試題和答案
- 智慧農(nóng)貿(mào)批發(fā)市場平臺規(guī)劃建設方案
- 林下野雞養(yǎng)殖建設項目可行性研究報告
- 2023年水利部黃河水利委員會招聘考試真題
- Python編程基礎(項目式微課版)教案22
- 01J925-1壓型鋼板、夾芯板屋面及墻體建筑構造
- 近五年重慶中考物理試題及答案2023
- 乳腺導管原位癌
- 冷庫管道應急預案
- 《學習教育重要論述》考試復習題庫(共250余題)
- 網(wǎng)易云音樂用戶情感畫像研究
評論
0/150
提交評論