2023-2024學(xué)年安徽省定遠(yuǎn)縣民族中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第1頁
2023-2024學(xué)年安徽省定遠(yuǎn)縣民族中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第2頁
2023-2024學(xué)年安徽省定遠(yuǎn)縣民族中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第3頁
2023-2024學(xué)年安徽省定遠(yuǎn)縣民族中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第4頁
2023-2024學(xué)年安徽省定遠(yuǎn)縣民族中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年安徽省定遠(yuǎn)縣民族中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是拋物線形拱橋,當(dāng)水面在n時,拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為()A. B.C. D.2.已知直線和圓相交于兩點.若,則的值為()A. B.C. D.3.已知O為坐標(biāo)原點,=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運(yùn)動,則當(dāng)取得最小值時,點Q的坐標(biāo)為()A. B.C. D.4.已知向量,,,若,則實數(shù)()A. B.C. D.5.第24屆冬季奧林匹克運(yùn)動會,將于2022年2月4日在北京市和張家口市聯(lián)合舉行.北京將成為奧運(yùn)史上第一個舉辦過夏季奧林匹克運(yùn)動會和冬季奧林匹克運(yùn)動會的城市.根據(jù)安排,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是兩個“相似橢圓”(離心率相同的兩個橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長軸一端點A和短軸一端點B分別向內(nèi)層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.6.在數(shù)列中抽取部分項(按原來的順序)構(gòu)成一個新數(shù)列,記為,再在數(shù)列插入適當(dāng)?shù)捻棧顾鼈円黄鹉軜?gòu)成一個首項為1,公比為3的等比數(shù)列.若,則數(shù)列中第項前(不含)插入的項的和最小為()A.30 B.91C.273 D.8207.?dāng)?shù)學(xué)美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊(yùn)藏于特有的抽象概念,公式符號,推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學(xué)的真實美.平面直角坐標(biāo)系中,曲線:就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結(jié)論:①曲線圍成的圖形的面積是;②曲線上的任意兩點間的距離不超過;③若是曲線上任意一點,則的最小值是其中正確結(jié)論的個數(shù)為()A. B.C. D.8.過點且平行于直線的直線的方程為()A. B.C. D.9.已知點,則直線的傾斜角為()A. B.C. D.10.拋物線的焦點到直線的距離()A. B.C.1 D.211.為了更好地研究雙曲線,某校高二年級的一位數(shù)學(xué)老師制作了一個如圖所示的雙曲線模型.已知該模型左、右兩側(cè)的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點與點,點與點均關(guān)于該雙曲線的對稱中心對稱,且,則()A. B.C. D.12.在中國共產(chǎn)黨建黨100周年之際,廣安市某中學(xué)組織了“黨史知識競賽”活動,已知該校共有高中學(xué)生1000人,用分層抽樣的方法從該校高中學(xué)生中抽取一個容量為25的樣本參加活動,其中高二年級抽取了8人,則該校高二年級學(xué)生人數(shù)為()A.960 B.720C.640 D.320二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)某市有關(guān)統(tǒng)計公報顯示,隨著“一帶一路”經(jīng)貿(mào)合作持續(xù)深化,該市對外貿(mào)易近幾年持續(xù)繁榮,2017年至2020年每年進(jìn)口總額(單位:千億元)和出口總額(單位:千億元)之間的一組數(shù)據(jù)如下:2017年2018年2019年2020年若每年的進(jìn)出口總額,滿足線性相關(guān)關(guān)系,則______;若計劃2022年出口總額達(dá)到千億元,預(yù)計該年進(jìn)口總額為______億元14.已知橢圓的長軸在軸上,若焦距為4,則__________.15.已知圓,圓與軸相切,與圓外切,且圓心在直線上,則圓的標(biāo)準(zhǔn)方程為________16.若橢圓的長軸是短軸的2倍,且經(jīng)過點,則橢圓的離心率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:上有一動點,,過點P作拋物線C的切線交y軸于點Q(1)判斷線段PQ的垂直平分線是否過定點?若過,求出定點坐標(biāo);若不過,請說明理由;(2)過點P作垂線交拋物線C于另一點M,若切線的斜率為k,設(shè)的面積為S,求的最小值18.(12分)如圖,在三棱柱中,,D為BC的中點,平面平面ABC(1)證明:;(2)已知四邊形是邊長為2的菱形,且,問在線段上是否存在點E,使得平面EAD與平面EAC的夾角的余弦值為,若存在,求出CE的長度,若不存在,請說明理由19.(12分)已知,:,:.(1)若,為真命題,為假命題,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍20.(12分)二項式展開式中第五項的二項式系數(shù)是第三項系數(shù)的4倍.求:(1);(2)展開式中的所有的有理項.21.(12分)某校高二年級共有男生490人和女生510人,現(xiàn)采用分層隨機(jī)抽樣的方法從該校高二年級中抽取100名學(xué)生,測得他們的身高數(shù)據(jù)(1)男生和女生應(yīng)各抽取多少人?(2)若樣本中男生和女生的平均身高分別為173.6、162.2厘米,請估計該校高二年級學(xué)生的平均身高22.(10分)在等差數(shù)列中.,(1)求的通項公式:(2)記的前項和為,求滿足的的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題建立平面直角坐標(biāo)系,設(shè)拋物線方程為,結(jié)合條件即求.【詳解】建立如圖所示的直角坐標(biāo)系:設(shè)拋物線方程為,由題意知:在拋物線上,即,解得:,,當(dāng)水位下降1米后,即將代入,即,解得:,∴水面寬為米.故選:D.2、C【解析】求出圓心到直線的距離,再利用,化簡求值,即可得到答案.【詳解】圓的圓心為,圓心到直線的距離公式為,故故選:C.3、C【解析】設(shè),用表示出,求得的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)求得當(dāng)時,取得最小值,從而求得點的坐標(biāo).【詳解】設(shè),則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當(dāng)λ=時,取得最小值,此時==,即點Q的坐標(biāo)為.故選:C4、C【解析】先根據(jù)題意求出,然后再根據(jù)得出,最后通過計算得出結(jié)果.【詳解】因為,,所以,又,,所以,即,解得.故選:.【點睛】本題主要考查向量數(shù)量積的坐標(biāo)運(yùn)算及向量垂直的相關(guān)性質(zhì),熟記運(yùn)算法則即可,屬于常考題型.5、C【解析】設(shè)內(nèi)層橢圓的方程為,可得外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,根據(jù),得到,同理得到,結(jié)合題意求得,進(jìn)而求得離心率.【詳解】設(shè)內(nèi)層橢圓方程為,因為內(nèi)外層的橢圓的離心率相同,可設(shè)外層橢圓的方程為,設(shè)切線的方程為,聯(lián)立方程組,整理得,由,整理得,設(shè)切線的方程為,同理可得,因為兩切線斜率之積等于,可得,可得,所以離心率為.故選:C.6、C【解析】先根據(jù)等比數(shù)列的通項公式得到,列出數(shù)列的前6項,將其中是數(shù)列的項的所有數(shù)去掉即可求解.【詳解】因為是以1為首項、3為公比的等比數(shù)列,所以,則由,得,即數(shù)列中前6項分別為:1、3、9、27、81、243,其中1、9、81是數(shù)列的項,3、27、243不是數(shù)列的項,且,所以數(shù)列中第7項前(不含)插入的項的和最小為.故選:C.7、C【解析】結(jié)合已知條件寫出曲線的解析式,進(jìn)而作出圖像,對于①,通過圖像可知,所求面積為四個半圓和一個正方形面積之和,結(jié)合數(shù)據(jù)求解即可;對于②,根據(jù)圖像求出曲線上的任意兩點間的距離的最大值即可判斷;對于③,將問題轉(zhuǎn)化為點到直線的距離,然后利用圓上一點到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當(dāng)且時,曲線的方程可化為:;當(dāng)且時,曲線的方程可化為:;當(dāng)且時,曲線的方程可化為:;當(dāng)且時,曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個半圓的面積與邊長為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點間的距離的最大值為兩個半徑與正方形的邊長之和,即,故②錯誤;因為到直線的距離為,所以,當(dāng)最小時,易知在曲線的第一象限內(nèi)的圖像上,因為曲線的第一象限內(nèi)的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.8、B【解析】根據(jù)平行設(shè)直線方程,代入點計算得到答案.【詳解】設(shè)直線方程為,將點代入直線方程得到,解得.故直線方程為:.故選:B.9、A【解析】由兩點坐標(biāo),求出直線的斜率,利用,結(jié)合傾斜角的范圍即可求解.【詳解】設(shè)直線AB的傾斜角為,因為,所以直線AB的斜率,即,因為,所以.故選:A10、B【解析】由拋物線可得焦點坐標(biāo),結(jié)合點到直線的距離公式,即可求解.【詳解】由拋物線可得焦點坐標(biāo)為,根據(jù)點到直線的距離公式,可得,即拋物線的焦點到直線的距離為.故選:B.11、D【解析】依題意以雙曲線的對稱中心為坐標(biāo)原點建系,設(shè)雙曲線的方程為,根據(jù)已知求得,點縱坐標(biāo)代入計算即可求得橫坐標(biāo)得出結(jié)果.【詳解】以雙曲線的對稱中心為坐標(biāo)原點,建立平面直角坐標(biāo)系,因為雙曲線的離心率為2,所以可設(shè)雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因為,所以的縱坐標(biāo)為18.由,得,故.故選:D.12、D【解析】由分層抽樣各層成比例計算即可【詳解】設(shè)高二年級學(xué)生人數(shù)為,則,解得故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.1.6②.3.65千##3650【解析】根據(jù)給定數(shù)表求出樣本中心點,代入即可求得,取可求出該年進(jìn)口總額.【詳解】由數(shù)表得:,,因此,回歸直線過點,由,解得,此時,,當(dāng)時,即,解得,所以,預(yù)計該年進(jìn)口總額為千億元.故答案為:1.6;3.65千14、8【解析】根據(jù)橢圓方程列方程,解得結(jié)果.【詳解】因為橢圓的長軸在軸上,焦距為4,所以故答案為:8【點睛】本題考查根據(jù)橢圓方程求參數(shù),考查基本分析求解能力,屬基礎(chǔ)題.15、【解析】根據(jù)題干求得圓的圓心及半徑,再利用圓與軸相切,與圓外切,且圓心在直線上確定圓的圓心及半徑.【詳解】圓的標(biāo)準(zhǔn)方程為,所以圓心,半徑為由圓心在直線上,可設(shè)因為與軸相切,與圓外切,于是圓的半徑為,從而,解得因此,圓的標(biāo)準(zhǔn)方程為故答案為:【點睛】判斷兩圓的位置關(guān)系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關(guān)系,一般不采用代數(shù)法.兩圓相切注意討論內(nèi)切外切兩種情況.16、【解析】分類討論焦點在軸與焦點在軸兩種情況.【詳解】因為橢圓經(jīng)過點,當(dāng)焦點在軸時,可知,,所以,所以,當(dāng)焦點在軸時,同理可得.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)線段的垂直平分線過定點(2)【解析】(1)設(shè)切線的方程為,并與拋物線方程聯(lián)立,利用判別式求得點坐標(biāo),進(jìn)而求得點坐標(biāo),從而求得線段的垂直平分線的方程,進(jìn)而求得定點坐標(biāo).(2)結(jié)合弦長公式求得的面積,利用基本不等式求得的最小值.【小問1詳解】依題意可知切線的斜率存在,且斜率大于.設(shè)直線PQ的方程為,.由消去并化簡得,由得,,則,解得,所以,在中,令得,所以,PQ中點為,所以線段PQ的中垂線方程為,即,所以線段的垂直平分線過定點.【小問2詳解】由(1)可知,直線PM的方程為,即.由消去并化簡得:,所以,而,所以得,,,.所以的面積,所以.當(dāng)且僅當(dāng)時等號成立.所以的最小值為.18、(1)證明見解析(2)存在,1【解析】(1)由面面垂直證明線面垂直,進(jìn)而證明線線垂直;(2)建立空間直角坐標(biāo)系,利用空間向量進(jìn)行求解.【小問1詳解】∵,且D為BC的中點,∴,因為平面平面ABC,交線為BC,AD⊥BC,AD面ABC,所以AD⊥面,因為面,所以.【小問2詳解】假設(shè)存在點E,滿足題設(shè)要求連接,,∵四邊形為邊長為2的菱形,且,∴為等邊三角形,∵D為BC的中點∴,∵平面平面ABC,交線為BC,面,所以面ABC,故以D為原點,DC,DA,分別為x,y,z軸的空間直角坐標(biāo)系則,,,,設(shè),,設(shè)面AED的一個法向量為,則,令,則設(shè)面AEC的一個法向量為,則,令,則設(shè)平面EAD與平面EAC的夾角為,則解得:,故點E為中點,所以19、(1)(2)【解析】(1)化簡命題p,將m=3代入求出命題q,再根據(jù)或、且連接的命題真假確定p,q真假即可得解;(2)由給定條件可得p是q的必要不充分條件,再列式計算作答.【小問1詳解】依題意,:,:,得:.當(dāng)時,:,因為真命題,為假命題,則與一真一假,當(dāng)真假時,即或,無解,當(dāng)假真時,即或,解得或,綜上得:或,所以實數(shù)x的取值范圍是;【小問2詳解】因是的充分不必要條件,則p是q的必要不充分條件,于是得,解得,所以實數(shù)m的取值范圍是20、(1)6;(2),,【解析】(1)先得到二項展開式的通項,再根據(jù)第五項的二項式系數(shù)是第三項系數(shù)的4倍,建立方程求解.(2)根據(jù)(1)的通項公式求解.【詳解】(1)二項展開式的通項.依題意得,,所以,解得.(2)由(1)得,當(dāng),3,6時為有理項,故有理有,,.【點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論