版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年廣州市嶺南中學數(shù)學高二上期末教學質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.以橢圓+=1的焦點為頂點,以這個橢圓的長軸的端點為焦點的雙曲線方程是()A. B.C. D.2.經(jīng)過點作圓的弦,使點為弦的中點,則弦所在直線的方程為A. B.C. D.3.在等差數(shù)列中,若,則()A.6 B.9C.11 D.244.設是等差數(shù)列,是其公差,是其前n項的和.若,,則下列結論不正確的是()A. B.C. D.與均為的最大值5.用反證法證明“若a,b∈R,,則a,b不全為0”時,假設正確的是()A.a,b中只有一個為0 B.a,b至少一個不為0C.a,b至少有一個為0 D.a,b全為06.如圖,在正方體中,()A. B.C. D.7.拋物線的焦點坐標A. B.C. D.8.已知等比數(shù)列的前n項和為,且,則()A.20 B.30C.40 D.509.我國的刺繡有著悠久的歷史,如圖,(1)(2)(3)(4)為刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形個數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第個圖形包含個小正方形,則的表達式為()A. B.C. D.10.已知線段AB的端點B在直線l:y=-x+5上,端點A在圓C1:上運動,線段AB的中點M的軌跡為曲線C2,若曲線C2與圓C1有兩個公共點,則點B的橫坐標的取值范圍是()A.(-1,0) B.(1,4)C.(0,6) D.(-1,5)11.某手機上網(wǎng)套餐資費:每月流量500M以下(包含500M),按20元計費;超過500M,但沒超過1000M(包含1000M)時,超出部分按0.15元/M計費;超過1000M時,超出部分按0.2元/M計費,流量消費累計的總流量達到封頂值(15GB)則暫停當月上網(wǎng)服務.若小明使用該上網(wǎng)套餐一個月的費用是100元,則他的上網(wǎng)流量是()A.800M B.900MC.1025M D.1250M12.已知函數(shù),則下列說法正確的是()A.的最小正周期為 B.的圖象關于直線C.的一個零點為 D.在區(qū)間的最小值為1二、填空題:本題共4小題,每小題5分,共20分。13.已知某農場某植物高度,且,如果這個農場有這種植物10000棵,試估計該農場這種植物高度在區(qū)間上的棵數(shù)為______.參考數(shù)據(jù):若,則,,.14.總體由編號為01,02,…,30的30個個體組成.選取方法是從下面隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為____________.66065747173407275017362523611665118918331119921970058102057864532345647615.在數(shù)列中,,,則___________.16.千年一遇對稱日,萬事圓滿在今朝,年月日又是一個難得的“世界完全對稱日”(公歷紀年日期中數(shù)字左右完全對稱的日期).數(shù)學上把這樣的對稱自然數(shù)叫回文數(shù),兩位數(shù)的回文數(shù)共有個(),其中末位是奇數(shù)的又叫做回文奇數(shù),則在內的回文奇數(shù)的個數(shù)為___三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(Ⅰ)求的單調區(qū)間和最值;(Ⅱ)設,證明:當時,18.(12分)已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù))(1)求的值;(2)是否存在常數(shù),使得對于定義域內的任意,恒成立?若存在,求出的值;若不存在,請說明理由19.(12分)已知命題p:實數(shù)x滿足(其中);命題q:實數(shù)x滿足(1)若,為真命題,求實數(shù)x的取值范圍;(2)若p是q的充分條件,求實數(shù)的取值范圍20.(12分)如圖,在直三棱柱中,,,D為的中點(1)求證:平面;(2)求平面與平面的夾角的余弦值;(3)若E為的中點,求與所成的角21.(12分)已知點關于直線的對稱點為Q,以Q為圓心的圓與直線相交于A,B兩點,且(1)求圓Q的方程;(2)過坐標原點O任作一直線交圓Q于C,D兩點,求證:為定值22.(10分)已知函數(shù),(1)討論的單調性;(2)若時,對任意都有恒成立,求實數(shù)的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)橢圓的幾何性質求橢圓的焦點坐標和長軸端點坐標,由此可得雙曲線的a,b,c,再求雙曲線的標準方程.【詳解】∵橢圓的方程為+=1,∴橢圓的長軸端點坐標為,,焦點坐標為,,∴雙曲線的焦點在y軸上,且a=1,c=2,∴b2=3,∴雙曲線方程為,故選:B.2、A【解析】由題知為弦AB的中點,可得直線與過圓心和點的直線垂直,可求的斜率,然后用點斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點睛】本題考查直線與圓的位置關系,直線的斜率,直線的點斜式方程,屬于基礎題3、B【解析】根據(jù)等差數(shù)列的通項公式的基本量運算求解【詳解】設的公差為d,因為,所以,又,所以故選:B4、C【解析】由已知條件可以得出,,,即可得公差,再利用等差數(shù)列的性質以及前n項的和的性質可判斷每個選項的正誤,進而可得正確選項.【詳解】由可得,由可得,故選項B正確;由可得,因為公差,故選項A正確,,所以,故選項C不正確;由于是等差數(shù)列,公差,,,,所以都是的最大值,故選項D正確;所以選項C不正確,故選:C5、D【解析】把要證的結論否定之后,即得所求的反設【詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設正確的是a,b全為0.故選:D6、B【解析】根據(jù)正方體的性質,結合向量加減法的幾何意義有,即可知所表示的向量.【詳解】∵,而,∴,故選:B7、B【解析】由拋物線方程知焦點在x軸正半軸,且p=4,所以焦點坐標為,所以選B8、B【解析】利用等比數(shù)列的前n項和公式即可求解.【詳解】設等比數(shù)列的首項為,公比為,則,由得,即,解得或(舍),且代入①得,則,所以.故選:B.9、D【解析】先分別觀察給出正方體的個數(shù)為:1,,,,總結一般性的規(guī)律,將一般性的數(shù)列轉化為特殊的數(shù)列再求解【詳解】解:根據(jù)前面四個發(fā)現(xiàn)規(guī)律:,,,,,累加得:,,故選:【點睛】本題主要考查了歸納推理,屬于中檔題10、D【解析】設,AB的中點,由中點坐標公式求得,代入圓C1:得點點M的軌跡方程,再根據(jù)兩圓的位置關系建立不等式,代入,求解即可得點B的橫坐標的取值范圍.【詳解】解:設,AB的中點,則,所以,又因為端點A在圓C1:上運動,所以,即,因為曲線C2與圓C1有兩個公共點,所以,又因B在直線l:y=-x+5上,所以,所以,整理得,即,解得,所以點B的橫坐標的取值范圍是,故選:D.11、C【解析】根據(jù)已知條件列方程,化簡求得小明的上網(wǎng)流量.【詳解】顯然小明上網(wǎng)流量超過了1000M但遠遠沒達到封頂值,假設超出部分為M,由得.故選:C12、D【解析】根據(jù)余弦函數(shù)的圖象與性質判斷其周期、對稱軸、零點、最值即可.【詳解】函數(shù),周期為,故A錯誤;函數(shù)圖像的對稱軸為,,,不是對稱軸,故B錯誤;函數(shù)的零點為,,,所以不是零點,故C錯誤;時,,所以,即,所以,故D正確.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、1359【解析】由已知求得,則,結合已知求得,乘以10000得答案【詳解】解:由,得,又,,則,估計該農場這種植物高度在區(qū)間,上的棵數(shù)為故答案為:135914、23【解析】根據(jù)隨機表,由編號規(guī)則及讀表位置列舉出前5個符合要求的編號,即可得答案.【詳解】由題設,依次得到的數(shù)字為57,47,17,34,07,27,50,17,36,25,23,……根據(jù)編號規(guī)則符合要求的依次為17,07,27,25,23,……所以第5個個體編號為23.故答案為:23.15、##.【解析】由遞推關系取可求,再取求,取求.詳解】由分別取,2,3可得,,,又,∴,,,故答案為:.16、【解析】根據(jù)分類加法計數(shù)原理,結合題中定義、組合的定義進行求解即可.【詳解】兩位數(shù)的回文奇數(shù)有,共個,三位數(shù)的回文奇數(shù)有,四位數(shù)的回文奇數(shù)有,所以在內的回文奇數(shù)的個數(shù)為,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)單調遞減區(qū)間為,單調遞增區(qū)間為;最小值為,無最大值;(Ⅱ)證明見解析【解析】(Ⅰ)根據(jù)導函數(shù)的正負即可確定單調區(qū)間,由單調性可得最值點;(Ⅱ)構造函數(shù),利用導數(shù)可確定單調性,結合的正負可確定的零點的范圍,進而得到結論.【詳解】(Ⅰ)由題意得:定義域為,,當時,;當時,;的單調遞減區(qū)間為,單調遞增區(qū)間為的最小值為,無最大值(Ⅱ)設,則,令得:當時,;當時,,在上單調遞增;在上單調遞減由(Ⅰ)知:,可得:,,可得:,即又,當時,,即當時,【點睛】思路點睛:本題考查導數(shù)在研究函數(shù)中的應用,涉及到函數(shù)單調性和最值的求解、利用導數(shù)證明不等式等知識;利用導數(shù)證明不等式的關鍵是能夠通過移項構造的方式,構造出新的函數(shù),通過的單調性,結合零點所處的范圍可分析得到結果.18、(1)2;(2)存在,.【解析】(1)對函數(shù)求導,利用得的值;(2)討論和分離參數(shù),構造新函數(shù)求解最值即可求解【詳解】解:(1),又由題意有(2)由(1)知,此時,由或,所以函數(shù)的單調減區(qū)間為和要恒成立,即①當時,,則要恒成立,令,再令,所以在內遞減,所以當時,,故,所以在內遞增,;②當時,lnx>0,則要恒成立,由①可知,當時,,所以內遞增,所以當時,,故,所以在內遞增,綜合①②可得,即存在常數(shù)滿足題意19、(1)(2)【解析】(1)由得命題p:,然后由為真命題求解;(2)由得,再根據(jù)是的充分條件求解.小問1詳解】當時,,解得:,由為真命題,,解得;【小問2詳解】由(其中)可得,因為是的充分條件,則,解得:20、(1)證明見解析(2)(3)【解析】(1)連接,交于O,連接OD,根據(jù)中位線的性質,可證,根據(jù)線面平行的判定定理,即可得證;(2)如圖建系,求得各點坐標,進而可求得平面與平面法向量,根據(jù)二面角的向量求法,即可得答案;(3)求得坐標,根據(jù)線線角的向量求法,即可得答案.【小問1詳解】連接,交于O,連接OD,則O為的中點,在中,因為O、D分別為、BC中點,所以,又因為平面,平面,所以平面【小問2詳解】由題意得,兩兩垂直,以B為原點,為x,y,z軸正方向建系,如圖所示:設,則,所以,則,,因為平面在平面ABC內,且平面ABC,所以即為平面的一個法向量,設平面的一個法向量為,則,所以,令,則,所以法向量,所以,由圖象可得平面與平面的夾角為銳角,所以平面與平面的夾角的余弦值為【小問3詳解】由(2)可得,設與所成的角為,則,解得,所以與所成的角為21、(1)(2)證明見解析【解析】(1)先求出點坐標,然后根據(jù)圓心到直線的距離公式及的值求出半徑即可求得圓的方程.(2)設出直線方程,聯(lián)立圓和直線方程利用韋達定理來求解.【小問1詳解】解:點關于直線的對稱點Q為由Q到直線的距離,所以所以圓的方程為【小問2詳解】當直線CD斜率不存在時,,所以.當直線CD斜率存在時,設為k,則直線為,記,聯(lián)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 渤海大學《中醫(yī)文化傳播》2023-2024學年第一學期期末試卷
- 二零二五年地產項目市場調研居間服務合同范本2篇
- 2025版智能家居合伙創(chuàng)業(yè)項目合同范本2篇
- 二零二五年創(chuàng)業(yè)投資借款延期及孵化器支持合同3篇
- 2025年度KTV消防安全管理與應急預案合同3篇
- 設備訂貨合同范本公司外部
- 2025年應屆畢業(yè)生實習協(xié)議:實習工資及就業(yè)保障協(xié)議6篇
- 2025版XX工程項目部臨時設施租賃及拆除服務合同3篇
- 2025版醫(yī)療機構科室醫(yī)療服務質量監(jiān)控承包合同3篇
- 二零二五年度五星級度假酒店管理公司全職員工聘用合同范本1份3篇
- 2024-2030年中國波浪發(fā)電商業(yè)計劃書
- 《中國腎性貧血診療的臨床實踐指南》解讀課件
- 2024年人教版八年級數(shù)學上冊期末考試卷(附答案)
- 電大本科《西方經(jīng)濟學》期末試題標準題庫及答案(試卷號:1026)
- 專題07:回憶性散文閱讀(考點串講)
- 公司IT運維管理制度
- 護理帶教課件教學課件
- 促進低空經(jīng)濟農林生產應用場景實施方案
- 重慶市市轄區(qū)(2024年-2025年小學四年級語文)人教版期末考試(上學期)試卷及答案
- 廣東省一年級數(shù)學上學期期末考試試卷部編版-(附解析)
- 2024年公安基礎知識考試題庫及答案
評論
0/150
提交評論