版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年臨夏市重點中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某地政府為落實疫情防控常態(tài)化,不定時從當?shù)?80名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測.把這批公務(wù)員按001到780進行編號,若054號被抽中,則下列編號也被抽中的是()A.076 B.104C.390 D.5222.下列雙曲線中,以為一個焦點,以為一個頂點的雙曲線方程是()A. B.C. D.3.已知橢圓C:()的長軸的長為4,焦距為2,則C的方程為()A B.C. D.4.若,則n的值為()A.7 B.8C.9 D.105.若存在過點(0,-2)的直線與曲線和曲線都相切,則實數(shù)a的值是()A.2 B.1C.0 D.-26.已知直線m經(jīng)過,兩點,則直線m的斜率為()A.-2 B.C. D.27.已知奇函數(shù)是定義在R上的可導(dǎo)函數(shù),的導(dǎo)函數(shù)為,當時,有,則不等式的解集為()A. B.C. D.8.在中,已知點在線段上,點是的中點,,,,則的最小值為()A. B.4C. D.9.若直線與雙曲線相交,則的取值范圍是A. B.C. D.10.19世紀法國著名數(shù)學(xué)家加斯帕爾·蒙日,創(chuàng)立了畫法幾何學(xué),推動了空間幾何學(xué)的獨立發(fā)展,提出了著名的蒙日圓定理:橢圓的兩條切線互相垂直,則切線的交點位于一個與橢圓同心的圓上,稱為蒙日圓,且該圓的半徑等于橢圓長半軸長與短半軸長的平方和的算術(shù)平方根.若圓與橢圓的蒙日圓有且僅有一個公共點,則b的值為()A. B.C. D.11.已知過點的直線與圓相切,且與直線垂直,則()A. B.C. D.12.曲線在處的切線的傾斜角是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,且,則_____________14.據(jù)相關(guān)數(shù)據(jù)統(tǒng)計,部分省市的政府工作報告將“推進5G通信網(wǎng)絡(luò)建設(shè)”列入2020年的重點工作,2020年一月份全國共建基站3萬個如果從2月份起,以后的每個月比上一個月多建設(shè)0.2萬個,那么2020年這一年全國共有基站________萬個15.已知直線過拋物線的焦點,且與的對稱軸垂直,與交于,兩點,,為的準線上一點,則的面積為________16.拋物線的準線方程是,則實數(shù)___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當時,求的單調(diào)區(qū)間與極值;(2)若不等式在區(qū)間上恒成立,求k的取值范圍18.(12分)有三個條件:①數(shù)列的任意相鄰兩項均不相等,,且數(shù)列為常數(shù)列,②,③,,中,從中任選一個,補充在下面橫線上,并回答問題已知數(shù)列的前n項和為,______,求數(shù)列的通項公式和前n項和19.(12分)設(shè)命題p:,命題q:關(guān)于x的方程無實根.(1)若p為真命題,求實數(shù)m的取值范圍;(2)若為假命題,為真命題,求實數(shù)m的取值范圍20.(12分)已知數(shù)列的首項,前n項和為,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)設(shè),求數(shù)列的前n項和.21.(12分)在正方體中,E,F(xiàn)分別是,的中點(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值22.(10分)一個盒中裝有編號分別為、、、的四個形狀大小完全相同的小球.(1)從盒中任取兩球,列出所有的基本事件,并求取出的球的編號之和大于的概率;(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,列出所有的基本事件,并求的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)題意,求得組數(shù)與抽中編號的對應(yīng)關(guān)系,即可判斷和選擇.【詳解】從780名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測,故需要分為組,每組人,設(shè)第組抽中的編號為,設(shè),由題可知:,故可得,故可得.當時,.故選:.2、C【解析】設(shè)出雙曲線方程,根據(jù)題意,求得,即可選擇.【詳解】因為雙曲線的一個焦點是,故可設(shè)雙曲線方程為,且;又為一個頂點,故可得,解得,則雙曲線方程為:.故選:.3、D【解析】由題設(shè)可得求出橢圓參數(shù),即可得方程.【詳解】由題設(shè),知:,可得,則,∴C的方程為.故選:D.4、D【解析】根據(jù)給定條件利用組合數(shù)的性質(zhì)計算作答【詳解】因為,則由組合數(shù)性質(zhì)有,即,所以n的值為10.故選:D5、A【解析】在兩曲線上設(shè)切點,得到切線,又因為(0,-2)在兩條切線上,列方程即可.【詳解】的導(dǎo)函數(shù)為,的導(dǎo)函數(shù)為,若直線與和的切點分別為(,),,∴過(0,-2)的直線為、,則有,可得故選:A.6、A【解析】根據(jù)斜率公式求得正確答案.【詳解】直線的斜率為:.故選:A7、B【解析】根據(jù)給定的不等式構(gòu)造函數(shù),再探討函數(shù)的性質(zhì),借助性質(zhì)解不等式作答.【詳解】依題意,令,因是R上的奇函數(shù),則,即是R上的奇函數(shù),當時,,則有在單調(diào)遞增,又函數(shù)在R上連續(xù),因此,函數(shù)在R上單調(diào)遞增,不等式,于是得,解得,所以原不等式的解集是.故選:B8、C【解析】利用三點共線可得,由,利用基本不等式即可求解.【詳解】由點是的中點,則,又因為點在線段上,則,所以,當且僅當,時取等號,故選:C【點睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運算求解能力,屬于基礎(chǔ)題.9、C【解析】聯(lián)立直線和雙曲線的方程得到,即得的取值范圍.【詳解】聯(lián)立直線和雙曲線的方程得當,即時,直線和雙曲線的漸近線重合,所以直線與雙曲線沒有公共點.當,即時,,解之得.故選:C.【點睛】本題主要考查直線和雙曲線的位置關(guān)系,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.10、B【解析】由題意求出蒙日圓方程,再由兩圓只有一個交點可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日圓的半徑,所以蒙日圓方程為,因為圓與橢圓的蒙日圓有且僅有一個公共點,所以兩圓相切,所以,解得,故選:B11、B【解析】首先由點的坐標滿足圓的方程來確定點在圓上,然后求出過點的圓的切線方程,最后由兩直線的垂直關(guān)系轉(zhuǎn)化為斜率關(guān)系求解.【詳解】由題知,圓的圓心,半徑.因為,所以點在圓上,所以過點的圓的切線與直線垂直,設(shè)切線的斜率,則有,即,解得.因為直線與切線垂直,所以,解得.故選:B.12、D【解析】求出函數(shù)的導(dǎo)數(shù),再求出并借助導(dǎo)數(shù)的幾何意義求解作答.【詳解】由求導(dǎo)得:,則有,因此,曲線在處的切線的斜率為,所以曲線在處切線的傾斜角是.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由,可得,,,從而利用換底公式及對數(shù)的運算性質(zhì)即可求解.【詳解】解:因為,所以,,,又,所以,所以,所以,故答案為:.14、2##【解析】由題意可知一月份到十二月份基站個數(shù)是以3為首項,0.2為公差的等差數(shù)列,根據(jù)等差數(shù)列求和公式可得答案.【詳解】一月份全國共建基站3萬個,2月全國共建基站萬個,3月全國共建基站萬個,,12月全國共建基站萬個,基站個數(shù)是以3為首項,0.2為公差的等差數(shù)列,2020年這一年全國共有基站萬個.故答案為:49.2.15、【解析】先設(shè)出拋物線方程,寫出準線方程和焦點坐標,利用得到拋物線方程,再利用三角形的面積公式進行求解.【詳解】設(shè)拋物線的方程為,則焦點為,準線方程為,由題意,得,,,所以,解得,所以.故答案為:.16、##【解析】將拋物線方程化為標準方程,根據(jù)其準線方程即可求得實數(shù).【詳解】拋物線化為標準方程:,其準線方程是,而所以,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在上單調(diào)遞增,在上單調(diào)遞減,極大值為﹣1,無極小值(2)【解析】(1)利用導(dǎo)數(shù)求出單調(diào)區(qū)間,即可求出極值;(2)令,利用分離參數(shù)法得到,利用導(dǎo)數(shù)求出的最大值即可求解.【小問1詳解】當時,,定義域為,當時,,單調(diào)遞增;當時,,單調(diào)遞減∴當時,取得極大值﹣1所以在上單調(diào)遞增,在上單調(diào)遞減極大值為﹣1,無極小值【小問2詳解】由,得,令,只需.求導(dǎo)得,所以當時,,單調(diào)遞增,當時,,單調(diào)遞減,∴當時,取得最大值,∴k的取值范圍為18、;【解析】選①,由數(shù)列為常數(shù)列可得,由此可求,根據(jù)任意相鄰兩項均不相等可得,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,選②由取可求,再取與原式相減可得,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,選③由取與原式相減可得,取可求,由此可得,故,由此證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式,利用分組求和法求數(shù)列的前n項和為,【詳解】解:選①:因為,數(shù)列為常數(shù)列,所以,解得或,又因為數(shù)列的任意相鄰兩項均不相等,且,所以數(shù)列為2,-1,2,-1,2,-1……,所以,即,所以,又,所以是以為首項,公比為-1的等比數(shù)列,所以,即;所以選②:因為,易知,,所以兩式相減可得,即,以下過程與①相同;選③:由,可得,又,時,,所以,因為,所以也滿足上式,所以,即,以下過程與①相同19、(1)(2)【解析】(1)解一元二次不等式,即可求得當為真命題時的取值范圍;(2)先求得命題為真命題時的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當為真命題時,解不等式可得;(2)當為真命題時,由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點睛】本題考查了根據(jù)命題真假求參數(shù)的取值范圍,由復(fù)合命題真假判斷命題真假,并求參數(shù)的取值范圍,屬于基礎(chǔ)題.20、(1)證明見解析(2)【解析】(1)當時,由,得,兩式相減化簡可得,再對等式兩邊同時減去1,化簡可證得結(jié)論,(2)由(1)得,然后利用分組求和可求出【小問1詳解】由已知得,.當時,.兩式相減得,.于是,即,又,,,所以滿足上式,所以對都成立,故數(shù)列是等比數(shù)列.【小問2詳解】由(1)得,,.21、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點,G是中點,∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標系,設(shè)正方體的棱長為2,則,則,設(shè)平面的法向量為,則,取;設(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴22、(1)基本事件答案見解析,概率為;(2)基本事件答案見解析,概率為.【解析】(1)利用列舉法列舉出所有的基本事件,并確定事件“取出的球的編號之和大于”所包含的基本事件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版購銷簡單的合同范本
- 2025年度建筑照明材料采購合同范本3篇
- 杭州公司合作合同范本
- 2024酒店勞動合同模板
- 2025年度GRC構(gòu)件生產(chǎn)與裝配安全責任合同3篇
- 影視作品海外發(fā)行與推廣2025年度合同2篇
- 二零二五年度跨區(qū)域LNG管道運輸及倉儲服務(wù)合同3篇
- 2025年度電機維修智能化改造升級合同3篇
- 2025年度電子元器件專用紙箱采購與倉儲管理合同3篇
- 2024珠寶首飾租賃與購買合同
- TD/T 1060-2021 自然資源分等定級通則(正式版)
- 人教版二年級下冊口算題大全1000道可打印帶答案
- 《創(chuàng)傷失血性休克中國急診專家共識(2023)》解讀
- 倉庫智能化建設(shè)方案
- 海外市場開拓計劃
- 2024年度國家社會科學(xué)基金項目課題指南
- 供應(yīng)鏈組織架構(gòu)與職能設(shè)置
- 幼兒數(shù)學(xué)益智圖形連線題100題(含完整答案)
- 七上-動點、動角問題12道好題-解析
- 2024年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
- 紅色歷史研學(xué)旅行課程設(shè)計
評論
0/150
提交評論