2023-2024學(xué)年福建省福州市三校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
2023-2024學(xué)年福建省福州市三校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
2023-2024學(xué)年福建省福州市三校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
2023-2024學(xué)年福建省福州市三校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
2023-2024學(xué)年福建省福州市三校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年福建省福州市三校聯(lián)考高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在長方體中,,,點分別在棱上,,,則()A. B.C. D.2.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.103.已知點、為橢圓的左、右焦點,若點為橢圓上一動點,則使得的點的個數(shù)為()A. B.C. D.不能確定4.已知函數(shù)的導(dǎo)數(shù)為,且滿足,則()A. B.C. D.5.在四棱錐中,底面是正方形,為的中點,若,則()A. B.C. D.6.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條7.若等比數(shù)列滿足,,則數(shù)列的公比為()A. B.C. D.8.已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數(shù)n的值是()A. B.C. D.9.已知在四棱錐中,平面,底面是邊長為4的正方形,,E為棱的中點,則直線與平面所成角的正弦值為()A. B.C. D.10.已知等比數(shù)列的前n項和為,公比為q,若,則下列結(jié)論正確的是()A. B.C. D.11.甲、乙同時參加某次數(shù)學(xué)檢測,成績?yōu)閮?yōu)秀的概率分別為、,兩人的檢測成績互不影響,則兩人的檢測成績都為優(yōu)秀的概率為()A. B.C. D.12.若向量,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在上的函數(shù)滿足,且對任意都有,則不等式的解集為__________.14.下方莖葉圖記錄了甲、乙兩組各5名學(xué)生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為,乙組數(shù)據(jù)的平均數(shù)為,則的值為__________15.已知函數(shù),則曲線在點處的切線方程為___________16.如圖,某湖有一半徑為的半圓形岸邊,現(xiàn)決定在圓心O處設(shè)立一個水文監(jiān)測中心(大小忽略不計),在其正東方向相距的點A處安裝一套監(jiān)測設(shè)備.為了監(jiān)測數(shù)據(jù)更加準確,在半圓弧上的點B以及湖中的點C處,再分別安裝一套監(jiān)測設(shè)備,且,.定義:四邊形及其內(nèi)部區(qū)域為“直接監(jiān)測覆蓋區(qū)域”,設(shè).則“直接監(jiān)測覆蓋區(qū)域”面積的最大值為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,(1)證明是等比數(shù)列,(2)求數(shù)列的前項和18.(12分)過點作圓的兩條切線,切點分別為A,B;(1)求直線AB的方程;(2)若M為圓上的一點,求面積的最大值19.(12分)已知數(shù)列是遞增的等差數(shù)列,,若成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和,求.20.(12分)已知拋物線C的焦點為,N為拋物線上一點,且(1)求拋物線C的方程;(2)過點F且斜率為k的直線l與C交于A,B兩點,,求直線l的方程21.(12分)如圖,在三棱錐P-ABC中,△ABC是以AC為底的等腰直角三角形,PA=PB=PC=AC=4,O為AC的中點.(1)證明:PO⊥平面ABC;(2)若點M在棱BC上,且,求平面MAP與平面CAP所成角的大小.22.(10分)已知定義域為的函數(shù)是奇函數(shù),其中為指數(shù)函數(shù)且的圖象過點(1)求的表達式;(2)若對任意的.不等式恒成立,求實數(shù)的取值范圍;

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】依題意可得,從而得到,即可得到,從而得解;【詳解】解:由長方體的性質(zhì)可得,又,所以,因為,所以,所以,因為,所以;故選:D2、A【解析】由已知設(shè)雙曲線方程為:,代入求得,計算即可得出離心率.【詳解】雙曲線經(jīng)過點,且它的兩條漸近線方程是,設(shè)雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A3、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時點位于橢圓短軸的頂點.因此,滿足條件的點的個數(shù)為.故選:B.4、C【解析】首先求出,再令即可求解.【詳解】由,則,令,則,所以.故選:C【點睛】本題主要考查了基本初等函數(shù)的導(dǎo)數(shù)以及導(dǎo)數(shù)的基本運算法則,屬于基礎(chǔ)題.5、C【解析】由為的中點,根據(jù)向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據(jù)向量的運算法則,可得.故選:C.6、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當(dāng)直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當(dāng)直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】設(shè)等比數(shù)列的公比為,然后由已知條件列方程組求解即可【詳解】設(shè)等比數(shù)列的公比為,因為,,所以,所以,解得,故選:D8、C【解析】首先根據(jù)拋物線焦半徑公式得到,從而得到,再根據(jù)曲線的一條漸近線與直線AM平行,斜率相等求解即可.【詳解】由題知:,解得,拋物線.雙曲線的左頂點為,,因為雙曲線的一條漸近線與直線平行,所以,解得.故選:C9、B【解析】建立空間直角坐標系,以向量法去求直線與平面所成角的正弦值即可.【詳解】平面,底面是邊長為4的正方形,則有,而,故平面,以A為原點,分別以AB、AD、AP所在直線為x軸、y軸、z軸建立空間直角坐標系如圖:則,,,設(shè)直線與平面所成角為,又由題可知為平面的一個法向量,則故選:B10、D【解析】根據(jù),可求得,然后逐一分析判斷各個選項即可得解.【詳解】解:因為,所以,因為,所以,所以,故A錯誤;又,所以,所以,所以,故BC錯誤;所以,故D正確.故選:D.11、D【解析】利用相互獨立事件概率乘法公式直接求解.【詳解】甲、乙同時參加某次數(shù)學(xué)檢測,成績?yōu)閮?yōu)秀的概率分別為、,兩人的檢測成績互不影響,則兩人的檢測成績都為優(yōu)秀的概率為.故選:D12、A【解析】根據(jù)向量垂直得到方程,求出的值.【詳解】由題意得:,解得:.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)來求得不等式的解集.【詳解】構(gòu)造函數(shù),,所以在上遞減,由,得,即,所以,即等式的解集為.故答案為:14、9【解析】閱讀莖葉圖,由甲組數(shù)據(jù)的中位數(shù)為可得,乙組的平均數(shù):,解得:,則:點睛:莖葉圖的繪制需注意:(1)“葉”的位置只有一個數(shù)字,而“莖”的位置的數(shù)字位數(shù)一般不需要統(tǒng)一;(2)重復(fù)出現(xiàn)的數(shù)據(jù)要重復(fù)記錄,不能遺漏,特別是“葉”的位置的數(shù)據(jù)15、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,利用點斜式求切線方程.【詳解】解:因,所以,又故切線方程為,整理為,故答案為:16、【解析】由題意,根據(jù)余弦定理得的值,則四邊形的面積表示為,再代入面積公式化簡為三角函數(shù),根據(jù)三角函數(shù)的性質(zhì)求解最大值即可.【詳解】在中,,,,,,則(其中),當(dāng)時,取最大值,所以“直接監(jiān)測覆蓋區(qū)域”面積的最大值.故答案為:.【點睛】解答本題的關(guān)鍵是將四邊形的面積表示為,代入面積公式后化簡得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì)求解最大值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】(1)利用定義法證明是一個與n無關(guān)的非零常數(shù),從而得出結(jié)論;(2)由(1)求出,利用分組求和法求【詳解】(1)由得,所以,所以是首項為,公比為的等比數(shù)列,,所以,(2)由(1)知的通項公式為;則所以【點睛】本題主要考查等比數(shù)列的證明以及分組求和法,屬于基礎(chǔ)題18、(1)(2)【解析】(1)求出以為直徑的圓的方程,結(jié)合已知圓的方程,將兩圓方程相減可求得兩圓公共弦所在直線方程;(2)求出圓上的點M到直線AB的距離的最大值,求出,利用三角形面積公式求得答案.【小問1詳解】圓的圓心坐標為,半徑為1,則的中點坐標為,,以為圓心,為直徑的圓的方程為,由,得①,由,得②,①②得:直線的方程為;【小問2詳解】圓心到直線的距離為故圓上的點M到直線的距離的最大值為,而,故面積的最大值為.19、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意列出方程組,求得的值,即可求解;(2)由(1)求得,結(jié)合“裂項法”即可求解.【詳解】(1)設(shè)等差數(shù)列的公差為,因為,若成等比數(shù)列,可得,解得,所以數(shù)列的通項公式為.(2)由(1)可得,所以.【點睛】關(guān)于數(shù)列的裂項法求和的基本策略:1、基本步驟:裂項:觀察數(shù)列的通項,將通項拆成兩項之差的形式;累加:將數(shù)列裂項后的各項相加;消項:將中間可以消去的項相互抵消,將剩余的有限項相加,得到數(shù)列的前項和.2、消項的規(guī)律:消項后前邊剩幾項,后邊就剩幾項,前邊剩第幾項,后邊就剩倒數(shù)第幾項.20、(1)(2)或【解析】(1)拋物線的方程為,利用拋物線的定義求出點N,代入拋物線方程即可求解.(2)設(shè)直線的方程為,將直線與拋物線方程聯(lián)立,利用韋達定理以及焦半徑公式可得或,即求.【小問1詳解】拋物線的方程為,設(shè),依題意,由拋物線定義,即.所以,又由,得,解得(舍去),所以拋物線的方程為.【小問2詳解】由(1)得,設(shè)直線的方程為,,,由,得.因為,故所以.由題設(shè)知,解得或,因此直線方程為或.21、(1)證明見解析(2)【解析】(1)接BO,由是等邊三角形得,由得出,再利用線面垂直的判斷定理可得平面;(2)建立以為坐標原點,分別為軸的空間直角坐標系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小問1詳解】連接BO,由已知△ABC是以AC為底的等腰直角三角形,且PA=PB=PC=AC=4,O為AC的中點,則是等邊三角形,,,在中,,滿足,即是直角三角形,則,又,平面,所以平面.【小問2詳解】建立以為坐標原點,分別為軸的空間直角坐標系如圖所示,則,,,,則平面的法向量為,由已知,得到點坐標,,設(shè)平面的法向量則,令,則,即,設(shè)平面MAP與平面CAP所成角為,則,則平面MAP與平面CAP所成角為.22、(1);(2).【解析】(1)設(shè)(且),因為的圖象過點,求得a的值,再根據(jù)函數(shù)f(x)是奇函數(shù),利用f(0)=0即可求得n的值,得到f(x)的解析式,檢驗是奇函數(shù)即可;(2)將分式分離常數(shù)后,利用指數(shù)函數(shù)的性質(zhì)可以判定f(x)在R上單調(diào)遞減,進而結(jié)合奇函數(shù)的性質(zhì)將不等式轉(zhuǎn)化為二次不等式,根據(jù)二次函數(shù)的圖象和性質(zhì),求得對于對任意的恒成立時a的取值范圍即可.【詳解】解:(1)由題意,設(shè)(且),因為的圖象過點,可得,解得,即,所以,又因為為上的奇函數(shù),可得,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論