版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆北京市中央民族大學附中高二數(shù)學第一學期期末經典模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的漸近線的斜率是()A.1 B.C. D.2.如圖,在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,則平面的法向量是()A.,1, B.,1,C.,, D.,1,3.在中,、、所對的邊分別為、、,若,,,則()A. B.C. D.4.已知,,若,則()A.6 B.11C.12 D.225.函數(shù)的圖象大致為()A B.C D.6.某城市2017年的空氣質量狀況如下表所示:污染指數(shù)3060100110130140概率其中污染指數(shù)時,空氣質量為優(yōu);時,空氣質量為良;時,空氣質量為輕微污染,該城市2017年空氣質量達到良或優(yōu)的概率為()A. B.C. D.7.在長方體中,,,則與平面所成的角的正弦值為()A. B.C. D.8.圓與的公共弦長為()A. B.C. D.9.已知A(-1,1,2),B(1,0,-1),設D在直線AB上,且,設C(λ,+λ,1+λ),若CD⊥AB,則λ的值為()A. B.-C. D.10.下列說法中正確的是()A.存在只有4個面的棱柱 B.棱柱的側面都是四邊形C.正三棱錐的所有棱長都相等 D.所有幾何體的表面都能展開成平面圖形11.若方程表示雙曲線,則此雙曲線的虛軸長等于()A. B.C. D.12.“冰雹猜想”數(shù)列滿足:,,若,則()A.4 B.3C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)解析式,則使得成立的的取值范圍是___________.14.已知雙曲線中心在坐標原點,左右焦點分別為,漸近線分別為,過點且與垂直的直線分別交于兩點,且,則雙曲線的離心率為________15.直線的傾斜角的大小是_________.16.已知拋物線的焦點F為,過點F的直線交該拋物線的準線于點A,與該拋物線的一個交點為B,且,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:,過點且斜率為k的直線與拋物線C相交于P,Q兩點.(1)設點B在x軸上,分別記直線PB,QB的斜率為.若,求點B的坐標;(2)過拋物線C的焦點F作直線PQ的平行線與拋物線C相交于M,N兩點,求的值.18.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠DAB=60°,PD⊥底面ABCD,點F為棱PD的中點,二面角的余弦值為.(1)求PD的長;(2)求異面直線BF與PA所成角的余弦值;(3)求直線AF與平面BCF所成角的正弦值.19.(12分)設等差數(shù)列的前項和為(1)求的通項公式;(2)求數(shù)列的前項和20.(12分)已知的離心率為,短軸長為2,F(xiàn)為右焦點(1)求橢圓的方程;(2)在x軸上是否存在一點M,使得過F的任意一條直線l與橢圓的兩個交點A,B,恒有,若存在求出M的坐標,若不存在,說明理由21.(12分)在平面直角坐標系中,已知拋物線的焦點與橢圓的右焦點重合(1)求橢圓的離心率;(2)求拋物線的方程;(3)設是拋物線上一點,且,求點的坐標22.(10分)已知函數(shù).(1)當時,求的最大值和最小值;(2)說明的圖象由函數(shù)的圖象經過怎樣的變換得到?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由雙曲線的漸近線方程為:,化簡即可得到答案.【詳解】雙曲線的漸近線方程為:,即,漸近線的斜率是.故選:B2、A【解析】設平面的法向量是,,,由可求得法向量.【詳解】在單位正方體中,以為原點,,,為坐標向量建立空間直角坐標系,,0,,,1,,,1,,,1,,,0,,設平面的法向量是,,,則,取,得,1,,平面的法向量是,1,.故選:.3、B【解析】利用正弦定理,以及大邊對大角,結合正弦定理,即可求得.【詳解】根據(jù)題意,由正弦定理,可得:,解得,故可得或,由,可得,故故選:B.4、C【解析】根據(jù)遞推關系式計算即可求出結果.【詳解】因為,,,則,,,故選:C.5、A【解析】利用導數(shù)求得的單調區(qū)間,結合函數(shù)值確定正確選項.【詳解】由,可得函數(shù)的減區(qū)間為,增區(qū)間為,當時,,可得選項為A故選:A6、A【解析】根據(jù)互斥事件的和的概率公式求解即可.【詳解】由表知空氣質量為優(yōu)的概率是,由互斥事件的和的概率公式知,空氣質量為良的概率為,所以該城市2017年空氣質量達到良或優(yōu)的概率,故選:A【點睛】本題主要考查了互斥事件,互斥事件和的概率公式,屬于中檔題.7、D【解析】過點作的垂線,垂足為,由線面垂直判定可知平面,則所求角即為,由長度關系求得即可.【詳解】在平面內過點作的垂線,垂足為,連接.,,,平面,平面,的正弦值即為所求角的正弦值,,,.故選:D.8、D【解析】已知兩圓方程,可先讓兩圓方程作差,得到其公共弦的方程,然后再計算圓心到直線的距離,再結合勾股定理即可完成弦長的求解.【詳解】已知圓,圓,兩圓方程作差,得到其公共弦的方程為::,而圓心到直線的距離為,圓的半徑為,所以,所以.故選:D.9、B【解析】設D(x,y,z),根據(jù)求出D(,,0),再根據(jù)CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【詳解】設D(x,y,z),則=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故選:B【點睛】(1)本題主要考查向量的線性運算和空間向量垂直的坐標表示,意在考查學生對這些知識的掌握水平和分析推理能力.(2).10、B【解析】對于A、B:由棱柱的定義直接判斷;對于C:由正三棱錐的側棱長和底面邊長不一定相等,即可判斷;對于D:由球的表面不能展開成平面圖形即可判斷【詳解】對于A:棱柱最少有5個面,則A錯誤;對于B:棱柱的所有側面都是平行四邊形,則B正確;對于C:正三棱錐的側棱長和底面邊長不一定相等,則C錯誤;對于D:球的表面不能展開成平面圖形,則D錯誤故選:B11、B【解析】根據(jù)雙曲線標準方程直接判斷.【詳解】方程即為,由方程表示雙曲線,可得,所以,,所以虛軸長為,故選:B.12、A【解析】根據(jù)題意分別假設為奇數(shù)、偶數(shù)的情況,求出對應的即可.【詳解】由題意知,因為,若為奇數(shù)時,,與為奇數(shù)矛盾,不符合題意;若為偶數(shù)時,,可得,符合題意.不符合故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意先判斷函數(shù)為偶函數(shù),再利用的導函數(shù)判斷在上單調遞增,根據(jù)偶函數(shù)的對稱性得上單調遞減.要使成立,即,解不等式即可得到答案.【詳解】,,為偶函數(shù),當時,,故函數(shù)在上單調遞增.為偶函數(shù),在上單調遞減.要使成立,即.故答案為:.14、【解析】判斷出三角形的形狀,求得點坐標,由此列方程求得,進而求得雙曲線的離心率.【詳解】依題意設雙曲線方程為,雙曲線的漸近線方程為,右焦點,不妨設.由于,所以是線段的中點,由于,所以是線段的垂直平均分,所以三角形是等腰三角形,則.直線的斜率為,則直線的斜率為,所以直線的方程為,由解得,則,即,化簡得,所以雙曲線的離心率為.故答案為:15、【解析】由題意,即,∴考點:直線的傾斜角.16、【解析】作垂直于準線,垂足為,準線與軸交于點,根據(jù)已知條件,利用幾何方法,結合拋物線的定義得到答案.【詳解】拋物線的焦點坐標,準線方程,作垂直于準線于,準線與軸交于點,則,∴.∵,∴,由拋物線的定義得,∴.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)直線的方程為,其中,聯(lián)立直線與拋物線方程,由韋達定理結合已知條件可求得點的坐標;(2)直線的方程為,利用傾斜角定義知,,聯(lián)立直線與拋物線方程,利用弦長公式求得,進而得解.小問1詳解】由題意,直線的方程為,其中.設,聯(lián)立,消去得..,,即.,即.,,∴點的坐標為.【小問2詳解】由題意,直線的方程為,其中,為傾斜角,則,設.聯(lián)立,消去得...18、(1)(2)(3)【解析】(1)以為軸,為軸,軸與垂直,建立如圖所示的空間直角坐標系,寫出各點坐標,設,,由空間向量法求二面角,從而求得,得長;(2)由空間向量法求異面直線所成的角;(3)由空間向量法求線面角【小問1詳解】以為軸,為軸,軸與垂直,由于菱形中,軸是的中垂線,建立如圖坐標系,則,,,設,,,,設平面一個法向量為,則,令,則,,即,平面的一個法向量是,因為二面角余弦值為.所以,(負值舍去)所以;【小問2詳解】由(1),,,,所以異面直線BF與PA所成角的余弦值為【小問3詳解】由(1)平面的一個法向量為,又,,所以直線AF與平面BCF所成角的正弦值為19、(1);(2).【解析】(1)根據(jù)等差數(shù)列前n項和求和公式求出首項和公差,進而求出通項公式;(2)結合(1)求出,再令得出數(shù)列的正數(shù)項和負數(shù)項,進而結合等差數(shù)列求和公式求得答案.【小問1詳解】設等差數(shù)列的首項和公差分別為和,∴,解得:所以.【小問2詳解】,所以.當;當,當,時,,當時,.綜上:.20、(1);(2)存在點M滿足條件,點M的坐標為.【解析】(1)根據(jù)給定條件直接計算出即可求解作答.(2)假定存在點,當直線l與x軸不重合時,設出l的方程,與橢圓C的方程聯(lián)立,借助、斜率互為相反數(shù)計算得解,再驗證直線l與x軸重合的情況即可作答.【小問1詳解】依題意,,而離心率,即,解得,所以橢圓C的方程為:.【小問2詳解】由(1)知,,假定存在點滿足條件,當直線與x軸不重合時,設l的方程為:,由消去x并整理得:,設,則有,因,則直線、斜率互為相反數(shù),于是得:,整理得,即,則有,即,而m為任意實數(shù),則,當直線l與x軸重合時,點A,B為橢圓長軸的兩個端點,點也滿足,所以存在點M滿足條件,點M的坐標為.【點睛】思路點睛:解答直線與橢圓相交的問題,常把直線與橢圓的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關系,并結合題設條件建立有關參變量的等量關系.21、(1);(2);(3)【解析】(1)由橢圓方程即可求出離心率.(2)求出橢圓的焦點即為拋物線的焦點,即可求出答案.(3)由拋物線定義可求出點的坐標【小問1詳解】由題意可知,.【小問2詳解】橢圓的右焦點為,故拋物線的焦點為.拋物線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藝術品展覽租賃承包合同
- 2024年版:建筑工程施工分包協(xié)議書模板
- 醫(yī)療衛(wèi)生經費管理規(guī)范
- 品牌故事講述櫥窗施工合同
- 2024年度電商企業(yè)文化建設與推廣合同6篇
- 珠寶加工工廠房屋租賃合同
- 教育培訓機構土地租賃協(xié)議
- 設備典當合同樣本
- 醫(yī)療服務科醫(yī)生勞動合同
- 食品安全監(jiān)管投標管理辦法
- 前程無憂行測筆試題庫
- 因式分解練習100道及答案
- 統(tǒng)編版(2024年新教材)七年級上冊語文第五單元學業(yè)質量測試卷(含答案)
- 空調水系統(tǒng)管道水壓試驗記錄
- 《旅游接待業(yè)》上冊題集
- 運動人體科學概論試題
- 國家開放大學電大《11848合同法》期末終考題庫及答案
- 2024年輔警招聘考試試題庫及答案(各地真題)
- 國開(河北)《經濟法基礎》形考1-4答案
- 項目風險預測及防范措施
- 2024政府采購評審專家考試真題庫及答案
評論
0/150
提交評論