2023-2024學(xué)年上海市上海市三林中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2023-2024學(xué)年上海市上海市三林中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2023-2024學(xué)年上海市上海市三林中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2023-2024學(xué)年上海市上海市三林中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2023-2024學(xué)年上海市上海市三林中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年上海市上海市三林中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在四面體OABC中,,,,則與AC所成角的大小為()A.30° B.60°C.120° D.150°2.按照小李的閱讀速度,他看完《三國演義》需要40個小時.2021年12月20日,他開始閱讀《三國演義》,當(dāng)天他讀了20分鐘,從第二天開始,他每天閱讀此書的時間比前一天增加10分鐘,則他恰好讀完《三國演義》的日期為()A.2022年1月8日 B.2022年1月9日C.2022年1月10日 D.2022年1月11日3.已知橢圓的一個焦點坐標(biāo)為,則的值為()A. B.C. D.4.已知為偶函數(shù),且當(dāng)時,,其中為的導(dǎo)數(shù),則不等式的解集為()A. B.C. D.5.4位同學(xué)報名參加四個課外活動小組,每位同學(xué)限報其中的一個小組,則不同的報名方法共有()A.24種 B.81種C.64種 D.256種6.直線且的傾斜角為()A. B.C. D.7.橢圓上一點到一個焦點的距離為,則到另一個焦點的距離是()A. B.C. D.8.函數(shù)y=x3+x2-x+1在區(qū)間[-2,1]上的最小值為()A. B.2C.-1 D.-49.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A. B.C. D.10.已知點是雙曲線的左、右焦點,以線段為直徑的圓與雙曲線在第一象限的交點為,若,則()A.與雙曲線的實軸長相等B.的面積為C.雙曲線的離心率為D.直線是雙曲線的一條漸近線11.如果直線與直線垂直,那么的值為()A. B.C. D.212.圓關(guān)于直線l:對稱的圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.平行六面體中,底面是邊長為1的正方形,,則對角線的長度為___.14.已知三個數(shù)2,,6成等比數(shù)列,則實數(shù)______15.已知,,,若,則______.16.一支車隊有10輛車,某天下午依次出發(fā)執(zhí)行運輸任務(wù).第一輛車于14時出發(fā),以后每間隔10分鐘發(fā)出一輛車.假設(shè)所有的司機都連續(xù)開車,并都在18時停下來休息.截止到18時,最后一輛車行駛了____小時,如果每輛車行駛的速度都是60km/h,這個車隊各輛車行駛路程之和為______千米三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知二次函數(shù).(1)若時,不等式恒成立,求實數(shù)a的取值范圍;(2)解關(guān)于x的不等式(其中).18.(12分)如圖所示,橢圓的左、右焦點分別為、,左、右頂點分別為、,為橢圓上一點,連接并延長交橢圓于點,已知橢圓的離心率為,△的周長為8(1)求橢圓的方程;(2)設(shè)點的坐標(biāo)為①當(dāng),,成等差數(shù)列時,求點的坐標(biāo);②若直線、分別與直線交于點、,以為直徑的圓是否經(jīng)過某定點?若經(jīng)過定點,求出定點坐標(biāo);若不經(jīng)過定點,請說明理由19.(12分)如圖所示,第九屆亞洲機器人錦標(biāo)賽VEX中國選拔賽永州賽區(qū)中,主辦方設(shè)計了一個矩形坐標(biāo)場地ABCD(包含邊界和內(nèi)部,A為坐標(biāo)原點),AD長為10米,在AB邊上距離A點4米的F處放置一只電子狗,在距離A點2米的E處放置一個機器人,機器人行走速度為v,電子狗行走速度為,若電子狗和機器人在場地內(nèi)沿直線方向同時到達(dá)場地內(nèi)某點M,那么電子狗將被機器人捕獲,點M叫成功點.(1)求在這個矩形場地內(nèi)成功點M的軌跡方程;(2)P為矩形場地AD邊上的一動點,若存在兩個成功點到直線FP的距離為,且直線FP與點M的軌跡沒有公共點,求P點橫坐標(biāo)的取值范圍.20.(12分)已知拋物線的焦點為,直線與拋物線的準(zhǔn)線交于點,為坐標(biāo)原點,(1)求拋物線的方程;(2)直線與拋物線交于,兩點,求的面積21.(12分)已知橢圓,四點中,恰有三點在橢圓上(1)求橢圓的方程;(2)設(shè)直線不經(jīng)過點,且與橢圓相交于不同的兩點.若直線與直線的斜率之和為,證明:直線過一定點,并求此定點坐標(biāo)22.(10分)在①,②,③,這三個條件中任選一個,補充在下面的問題中,并解答問題在中,內(nèi)角A,,的對邊分別為,,,且滿足______________(1)求;(2)若的面積為,在邊上,且,求的最小值注:如果選擇多個條件分別解答,按第一個解答計分

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】以為空間的一個基底,求出空間向量求的夾角即可判斷作答.【詳解】在四面體OABC中,不共面,則,令,依題意,,設(shè)與AC所成角的大小為,則,而,解得,所以與AC所成角的大小為.故選:B2、B【解析】由等差數(shù)列前n項和列不等式求解即可.【詳解】由題知,每天的讀書時間為等差數(shù)列,首項為20,公差為10,記n天讀完.則40小時=2400分鐘,令,得或(舍去),故,即第21天剛好讀完,日期為2022年1月9日.故選:B3、B【解析】根據(jù)題意得到得到答案.【詳解】橢圓焦點在軸上,且,故.故選:B.4、A【解析】根據(jù)已知不等式和要求解的不等式特征,構(gòu)造函數(shù),將問題轉(zhuǎn)化為解不等式.通過已知條件研究g(x)的奇偶性和單調(diào)性即可解該不等式.【詳解】令,則根據(jù)題意可知,,∴g(x)是奇函數(shù),∵,∴當(dāng)時,,單調(diào)遞減,∵g(x)是奇函數(shù),g(0)=0,∴g(x)在R上單調(diào)遞減,由不等式得,.故選:A.5、D【解析】利用分步乘法計數(shù)原理進(jìn)行計算.【詳解】每位同學(xué)均有四種選擇,故不同的報名方法有種.故選:D6、C【解析】由直線方程可知其斜率,根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.7、B【解析】利用橢圓的定義可得結(jié)果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個焦點的距離是.故選:B.8、C【解析】詳解】,令,解得或;令,解得函數(shù)在上遞增,在遞減,在遞增,時,取極大值,極大值是時,函數(shù)取極小值,極小值是,而時,時,,故函數(shù)的最小值為,故選C.9、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設(shè),進(jìn)而作,得出,由此求出結(jié)果【詳解】因為,所以,即所以,由雙曲線的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B10、B【解析】由題意及雙曲線的定義可得,的值,進(jìn)而可得A不正確,計算可判斷B正確,再求出,的關(guān)系可得C不正確,求出,的關(guān)系,進(jìn)而求出漸近線的方程,可得D不正確【詳解】因為,又由題意及雙曲線的定義可得:,則,,所以A不正確;因為在以為直徑的圓上,所以,所以,所以B正確;在△中,由勾股定理可得,即,所以離心率,所以C不正確;由C的分析可知:,故,所以漸近線的方程為,即,所以D不正確;故選:B11、A【解析】根據(jù)兩條直線垂直列方程,化簡求得的值.【詳解】由于直線與直線垂直,所以.故選:A12、A【解析】首先求出圓的圓心坐標(biāo)與半徑,再設(shè)圓心關(guān)于直線對稱的點的坐標(biāo)為,即可得到方程組,求出、,即可得到圓心坐標(biāo),從而求出對稱圓的方程;【詳解】解:圓的圓心為,半徑,設(shè)圓心關(guān)于直線對稱的點的坐標(biāo)為,則,解得,即圓關(guān)于直線對稱的圓的圓心為,半徑,所以對稱圓的方程為;故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】利用,兩邊平方后,利用向量數(shù)量積計算公式,計算得.【詳解】對兩邊平方并化簡得,故.【點睛】本小題主要考查空間向量的加法和減法運算,考查空間向量數(shù)量積的表示,屬于中檔題.14、【解析】由題意可得,從而可求出的值【詳解】因為三個數(shù)2,,6成等比數(shù)列,所以,解得故答案為:15、【解析】根據(jù)題意,由向量坐標(biāo)表示,列出方程,求出,,即可得出結(jié)果.【詳解】因為,,,若,則,解得,所以.故答案為:.【點睛】本題主要考查由向量坐標(biāo)表示求參數(shù),屬于基礎(chǔ)題型.16、①.2.5####②.1950【解析】通過分析,求出最后一輛車的出發(fā)時間,從而求出最后一輛車的行駛時間,這10輛車的行駛路程可以看作等差數(shù)列,利用等差數(shù)列求和公式進(jìn)行求解.【詳解】因為,所以最后一輛車出發(fā)時間為15時30分,則最后一輛車行駛時間為18-15.5=2.5小時,第一輛車行程為km,且從第二輛車開始,每輛車都比前一輛少走km,這10輛車的行駛路程可以看作首項為240,公差為-10的等差數(shù)列,則10輛車的行程路程之和為(km).故答案為:2.5,1950三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)答案見解析【解析】(1)當(dāng)時將原不等式變形為,根據(jù)基本不等式計算即可;(2)將原不等式化為,求出參數(shù)a分別取值、、時的解集.【小問1詳解】不等式即為:,當(dāng)時,不等式可變形為:,因為,當(dāng)且僅當(dāng)時取等號,所以,所以實數(shù)a的取值范圍是;【小問2詳解】不等式,即,等價于,轉(zhuǎn)化為;當(dāng)時,因為,所以不等式的解集為;當(dāng)時,因為,所以不等式的解集為;當(dāng)時,因為,所以不等式的解集為;綜上所述,當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為.18、(1);(2)①或;②過定點、,理由見解析.【解析】(1)由焦點三角形的周長、離心率求橢圓參數(shù),即可得橢圓方程.(2)①由(1)可得,結(jié)合橢圓的定義求,即可確定的坐標(biāo);②由題設(shè),求直線、的方程,進(jìn)而求、坐標(biāo),即可得為直徑的圓的方程,令求橫坐標(biāo),即可得定點.【小問1詳解】由題設(shè),易知:,可得,則,∴橢圓.【小問2詳解】①由(1)知:,令,則,∴,解得,故,此時或②由(1),,,∴可令直線:,直線:,∴將代入直線可得:,,則圓心且半徑為,∴為直徑的圓為,當(dāng)時,,又,∴,可得或.∴為直徑的圓過定點、.【點睛】關(guān)鍵點點睛:第二問,應(yīng)用點斜式寫出直線、的方程,再求、坐標(biāo),根據(jù)定義求為直徑的圓的方程,最后令及在橢圓上求定點.19、(1)(2)【解析】(1)分別以為軸,建立平面直角坐標(biāo)系,由題意,利用兩點間的距離公式可得答案.(2)由題意可得點的軌跡所在圓的圓心到直線的距離,點的軌跡與軸的交點到直線的距離,從而可得答案.【小問1詳解】分別以為軸,建立平面直角坐標(biāo)系,則,設(shè)成功點,可得即,化簡得因為點需在矩形場地內(nèi),所以故所求軌跡方程為【小問2詳解】設(shè),直線方程為直線FP與點M軌跡沒有公共點,則圓心到直線的距離大于依題意,動點需滿足兩個條件:點的軌跡所在圓的圓心到直線的距離即,解得②點的軌跡與軸的交點到直線的距離即,解得綜上所述,P點橫坐標(biāo)的取值范圍是20、(1)(2)【解析】(1)根據(jù)題意建立關(guān)于的方程,解得的值即可.(2)聯(lián)列方程組并消元,韋達(dá)定理整體思想求的長,再求點到直線的距離,進(jìn)而求面積.【小問1詳解】由題意可得,,則,因為,所以,解得,故拋物線的方程為【小問2詳解】由(1)可知,則點到直線的距離聯(lián)立,整理得設(shè),,則,從而因為直線過拋物線的焦點,所以故的面積為21、(1)(2)證明見解析,定點【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設(shè)斜率存在,設(shè)出直線,利用斜率之和為,求出之間的關(guān)系,即可求出定點,再說明斜率不存在時,直線仍過該點即可.【小問1詳解】由對稱性同時在橢圓上或同時不在橢圓上,從而在橢圓上,因此不在橢圓上,故在橢圓上,將,代入橢圓的方程,解得,所以橢圓的方程為【小問2詳解】當(dāng)直線斜率存在時,令方程為,由得所以得方程為,過定點當(dāng)直線斜率不存在時,令方程為,由,即解得此時直線方程為,也過點綜上,直線過定點.【點睛】本題關(guān)鍵點在于先假設(shè)斜率存在,設(shè)出直線,利用題目所給條件得到之間的關(guān)系,即可求出定點,再說明斜率不存在時,直線仍過該點即可,屬于定點問題的常見解法,注意積累掌握.22、選擇見解析;(1);(2)【解析】(1)選條件①.利用正弦定理邊角互化,結(jié)合兩角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論