版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年陜西省安康市漢濱高中高二上數(shù)學(xué)期末經(jīng)典試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線C:,則過拋物線C的焦點(diǎn),弦長(zhǎng)為整數(shù)且不超過2022的直線的條數(shù)是()A.4037 B.4044C.2019 D.20222.已知直線與圓相切,則的值是()A. B.C. D.3.第24屆冬季奧林匹克運(yùn)動(dòng)會(huì),將在2022年2月4日在中華人民共和國(guó)北京市和張家口市聯(lián)合舉行.這是中國(guó)歷史上第一次舉辦冬季奧運(yùn)會(huì),北京成為奧運(yùn)史上第一個(gè)舉辦夏季奧林匹克運(yùn)動(dòng)會(huì)和冬季奧林匹克運(yùn)動(dòng)會(huì)的城市.同時(shí)中國(guó)也成為第一個(gè)實(shí)現(xiàn)奧運(yùn)“全滿貫”(先后舉辦奧運(yùn)會(huì)、殘奧會(huì)、青奧會(huì)、冬奧會(huì)、冬殘奧會(huì))國(guó)家.根據(jù)規(guī)劃,國(guó)家體育場(chǎng)(鳥巢)成為北京冬奧會(huì)開、閉幕式的場(chǎng)館.國(guó)家體育場(chǎng)“鳥巢”的鋼結(jié)構(gòu)鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是離心率相同的橢圓,若由外層橢圓長(zhǎng)軸一端點(diǎn)和短軸一端點(diǎn)分別向內(nèi)層橢圓引切線,(如圖),且兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.4.已知p:,那么p的一個(gè)充分不必要條件是()A. B.C. D.5.在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù)則該數(shù)滿足的概率為()A. B.C. D.6.如圖1所示,拋物面天線是指由拋物面(拋物線繞其對(duì)稱軸旋轉(zhuǎn)形成的曲面)反射器和位于其焦點(diǎn)上的照射器(饋源,通常采用喇叭天線)組成的單反射面型天線,廣泛應(yīng)用于微波和衛(wèi)星通訊等,具有結(jié)構(gòu)簡(jiǎn)單、方向性強(qiáng)、工作頻帶寬等特點(diǎn).圖2是圖1的軸截面,,兩點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,是拋物線的焦點(diǎn),是饋源的方向角,記為.焦點(diǎn)到頂點(diǎn)的距離與口徑的比為拋物面天線的焦徑比,它直接影響天線的效率與信噪比等.若饋源方向角滿足,則該拋物面天線的焦徑比為()A. B.C. D.27.拋物線型太陽灶是利用太陽能輻射的一種裝置.當(dāng)旋轉(zhuǎn)拋物面的主光軸指向太陽的時(shí)候,平行的太陽光線入射到旋轉(zhuǎn)拋物面表面,經(jīng)過反光材料的反射,這些反射光線都從它的焦點(diǎn)處通過,形成太陽光線的高密集區(qū),拋物面的焦點(diǎn)在它的主光軸上.如圖所示的太陽灶中,灶深CD即焦點(diǎn)到灶底(拋物線的頂點(diǎn))的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m8.“x>1”是“x>0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知是空間的一個(gè)基底,若,,若,則()A. B.C.3 D.10.若,則()A.1 B.2C.4 D.811.已知拋物線的焦點(diǎn)坐標(biāo)是,則拋物線的標(biāo)準(zhǔn)方程為A. B.C. D.12.橢圓的焦點(diǎn)坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等比數(shù)列中,,則______14.已知點(diǎn)是橢圓上的一點(diǎn),分別為橢圓的左、右焦點(diǎn),已知=120°,且,則橢圓的離心率為___________.15.已知拋物線:上有兩動(dòng)點(diǎn),,且,則線段的中點(diǎn)到軸距離的最小值是___________.16.圓被直線所截得弦的最短長(zhǎng)度為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E為棱BC上的點(diǎn),且(1)求證:平面PAC;(2)求二面角A-PC-D的正弦值18.(12分)平面直角坐標(biāo)系中,過橢圓:右焦點(diǎn)的直線交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為.(1)求橢圓M的方程;(2)C,D為橢圓M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD與AB垂直,求四邊形ACBD面積的最大值.19.(12分)如圖所示在多面體中,平面,四邊形是正方形,,,,.(1)求證:直線平面;(2)求平面與平面夾角的余弦值.20.(12分)如圖所示,是棱長(zhǎng)為的正方體,是棱的中點(diǎn),是棱的中點(diǎn)(1)求直線與平面所成角的正弦值;(2)求到平面的距離21.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.22.(10分)已知函數(shù).(1)判斷的單調(diào)性.(2)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)已知條件,結(jié)合拋物線的性質(zhì),先求出過焦點(diǎn)的最短弦長(zhǎng),再結(jié)合拋物線的對(duì)稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質(zhì)可得,過拋物線焦點(diǎn)中,長(zhǎng)度最短的為垂直于y軸的那條弦,則過拋物線C的焦點(diǎn),長(zhǎng)度最短的弦的長(zhǎng)為,由拋物線的對(duì)稱性可得,弦長(zhǎng)在5到2022之間的有共有條,故弦長(zhǎng)為整數(shù)且不超過2022的直線的條數(shù)是故選:A2、D【解析】直線與圓相切,直接通過求解即可.【詳解】因?yàn)橹本€與圓相切,所以圓心到直線的距離,所以,.故選:D3、B【解析】分別設(shè)內(nèi)外層橢圓方程為、,進(jìn)而設(shè)切線、分別為、,聯(lián)立方程組整理并結(jié)合求、關(guān)于a、b、m的關(guān)系式,再結(jié)合已知得到a、b的齊次方程求離心率即可.【詳解】若內(nèi)層橢圓方程為,由離心率相同,可設(shè)外層橢圓方程為,∴,設(shè)切線為,切線為,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)內(nèi)外橢圓的離心率相同設(shè)橢圓方程,并寫出切線方程,聯(lián)立方程結(jié)合及已知條件,得到橢圓參數(shù)的齊次方程求離心率.4、C【解析】按照充分不必要條件依次判斷4個(gè)選項(xiàng)即可.【詳解】A選項(xiàng):,錯(cuò)誤;B選項(xiàng):,錯(cuò)誤;C選項(xiàng):,,正確;D選項(xiàng):,錯(cuò)誤.故選:C.5、C【解析】求解不等式,利用幾何概型的概率計(jì)算公式即可容易求得.【詳解】求解不等式可得:,由幾何概型的概率計(jì)算公式可得:在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù)則該數(shù)滿足的概率為.故選:.6、B【解析】建立平面直角坐標(biāo)系,利用題設(shè)條件得到得點(diǎn)坐標(biāo),代入拋物線方程化簡(jiǎn)即可求解【詳解】建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的方程為()在中,則所以則所以,所以將代入拋物線方程中得所以或即或(舍)當(dāng)時(shí),故選:B7、C【解析】建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的方程為,根據(jù)是拋物線的焦點(diǎn),求得拋物線的方程,進(jìn)而求得的長(zhǎng).【詳解】由題意,建立如圖所示的平面直角坐標(biāo)系,O與C重合,設(shè)拋物線的方程為,由題意可得是拋物線的焦點(diǎn),即,可得,所以拋物線的方程為,當(dāng)時(shí),,所以.故選:C.8、A【解析】根據(jù)充分、必要條件間的推出關(guān)系,判斷“x>1”與“x>0”的關(guān)系.【詳解】“x>1”,則“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要條件.故選:A.9、C【解析】由,可得存在實(shí)數(shù),使,然后將代入化簡(jiǎn)可求得結(jié)果【詳解】,,因,所以存在實(shí)數(shù),使,所以,所以,所以,得,,所以,故選:C10、D【解析】由題意結(jié)合導(dǎo)數(shù)的運(yùn)算可得,再由導(dǎo)數(shù)的概念即可得解.【詳解】由題意,所以,所以.故選:D.11、D【解析】根據(jù)拋物線的焦點(diǎn)坐標(biāo)得到2p=4,進(jìn)而得到方程.【詳解】拋物線的焦點(diǎn)坐標(biāo)是,即p=2,2p=4,故得到方程為.故答案為D.【點(diǎn)睛】這個(gè)題目考查了拋物線的標(biāo)準(zhǔn)方程的求法,題目較為簡(jiǎn)單.12、B【解析】根據(jù)方程可得,且焦點(diǎn)軸上,然后可得答案.【詳解】由橢圓的方程可得,且焦點(diǎn)在軸上,所以,即,故焦點(diǎn)坐標(biāo)為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用等比數(shù)列性質(zhì)和通項(xiàng)公式可求得,根據(jù)可求得結(jié)果.【詳解】,又,,.故答案為:.14、【解析】設(shè),由余弦定理知,所以,故填.15、2【解析】設(shè)拋物線的焦點(diǎn)為,由,結(jié)合拋物線的定義可得線段的中點(diǎn)到軸距離的最小值.【詳解】設(shè)拋物線的焦點(diǎn)為,點(diǎn)在拋物線的準(zhǔn)線上的投影為,點(diǎn)在直線上的投影為,線段的中點(diǎn)為,點(diǎn)到軸的距離為,則,∴,當(dāng)且僅當(dāng)即三點(diǎn)共線時(shí)等號(hào)成立,∴線段的中點(diǎn)到軸距離的最小值是2,故答案為:2.16、【解析】首先確定直線所過定點(diǎn);由圓的方程可確定圓心和半徑,進(jìn)而求得圓心到的距離,由此可知所求最短長(zhǎng)度為.【詳解】由得:,直線恒過點(diǎn);,在圓內(nèi);又圓的圓心為,半徑,圓心到點(diǎn)的距離,所截得弦的最短長(zhǎng)度為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】建立空間直角坐標(biāo)系,計(jì)算出相關(guān)點(diǎn)的坐標(biāo),進(jìn)而計(jì)算出相關(guān)向量的坐標(biāo);(1)計(jì)算向量的數(shù)量積,,根據(jù)數(shù)量積結(jié)果為零,證明線線垂直,進(jìn)而證明線面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根據(jù)向量的夾角公式即可求解.【小問1詳解】證明:因?yàn)槠矫鍭BCD,平面ABCD,平面ABCD,所以,,又因?yàn)?,則以A為坐標(biāo)原點(diǎn),分別以AB、AD、AP所在的直線為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,,,則,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小問2詳解】解:由(1)可知平面PAC,可作為平面PAC的法向量,設(shè)平面PCD的法向量,因?yàn)?,所以,即,不妨設(shè),得,又由圖示知二面角為銳角,所以二面角的正弦值為18、(1)(2)【解析】(1)設(shè),,的中點(diǎn)為,利用“點(diǎn)差法”求解;(2)由求得A,B的坐標(biāo),進(jìn)而得到的長(zhǎng),再根據(jù),設(shè)直線的方程為,由,求得的長(zhǎng),然后由四邊形的面積為求解.【小問1詳解】解:把右焦點(diǎn)代入直線,得,設(shè),,的中點(diǎn)為,則,,相減得,即,即,即.又,,則.又,解得,,故橢圓的方程為.【小問2詳解】聯(lián)立消去,可得,解得或,故交點(diǎn)為,.所以.因?yàn)椋钥稍O(shè)直線的方程為,,,聯(lián)立消去,得到,因?yàn)橹本€與橢圓有兩個(gè)不同的交點(diǎn),則,解得,且,又,則.故四邊形的面積為,故當(dāng)時(shí),取得最大值,最大值為.所以四邊形的面積的最大值為.19、(1)證明見解析;(2).【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),分別以、、為、、軸建立空間直角坐標(biāo)系,利用空間向量法可證明出直線平面;(2)利用空間向量法可求得平面與平面夾角的余弦值.【小問1詳解】證明:因?yàn)槠矫?,,以點(diǎn)為坐標(biāo)原點(diǎn),分別以、、為、、軸建立空間直角坐標(biāo)系,則、、、、、,所以,,,設(shè)平面的法向量為,依題意有,即,令,可得,,則,平面,因此,平面.【小問2詳解】解:由題,,設(shè)平面的法向量為,依題意有,即,取,可得,,因此,平面與平面的夾角余弦值為.20、(1)(2)【解析】(1)以為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得直線與平面所成角的正弦值;(2)求出平面的法向量,利用空間向量法可求得到平面的距離.【小問1詳解】解:以為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的坐標(biāo)系則、、、、、、,所以,,設(shè)平面的一個(gè)法向量為,,,由,取,可得,所以,,直線與平面所成角的正弦為小問2詳解】解:設(shè)平面的一個(gè)法向量,,,由,即,令,得,,所以點(diǎn)到平面的距離為即到平面的距離為21、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計(jì)算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量,則,即,取得到,,設(shè)直線與平面所成角為故.【點(diǎn)睛】本題考查了線面垂直,線面夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.22、(1)在R上單調(diào)遞增,無單調(diào)遞減區(qū)間;(2)證明見解析.【解析】(1)對(duì)求導(dǎo),令
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年茶葉品牌區(qū)域銷售代理協(xié)議
- 2024秋季農(nóng)產(chǎn)品銷售代理合同
- 2024年度特色車位買賣協(xié)議(兒童樂園配套)3篇
- 《煤礦運(yùn)輸提升系統(tǒng)的安全檢查》培訓(xùn)課件2025
- 2024政府采購(gòu)保密協(xié)議范本(體育場(chǎng)館建設(shè))3篇
- 2024新校區(qū)建設(shè)項(xiàng)目沉降數(shù)據(jù)收集與分析及基礎(chǔ)施工合同3篇
- 2024無線網(wǎng)絡(luò)覆蓋系統(tǒng)弱電裝修合同
- 2024政工程有限公承建的綠色環(huán)保智慧校園合同3篇
- 2024年精裝室內(nèi)實(shí)木門采購(gòu)合同版
- 2024手繪墻繪藝術(shù)裝置設(shè)計(jì)與制作合同3篇
- 2023-2024學(xué)年貴州省貴陽外國(guó)語實(shí)驗(yàn)中學(xué)八年級(jí)(上)期末數(shù)學(xué)試卷(含答案)
- 2024年新能源汽車概論考試題庫(kù)
- 2024年醫(yī)師定期考核臨床類人文醫(yī)學(xué)知識(shí)考試題庫(kù)及答案(共280題)
- 2024年公司年終工作會(huì)議講話稿(4篇)
- 供應(yīng)商年終總結(jié)
- 2024員工心理健康培訓(xùn)
- 2024年廣東省公務(wù)員考試《行測(cè)》真題及答案解析
- 2024年氫工藝作業(yè)考試題庫(kù)及答案(700題)
- 2025屆重慶南開中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題含解析
- 常見癥狀腹痛課件
- 《生活垃圾的回收與利用》(教案)-2024-2025學(xué)年四年級(jí)上冊(cè)綜合實(shí)踐活動(dòng)教科版
評(píng)論
0/150
提交評(píng)論