版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年陜西省西安鐵一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,橢圓的右焦點(diǎn)為,過(guò)與軸垂直的直線(xiàn)交橢圓于第一象限的點(diǎn),點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,且,,則橢圓方程為()A. B.C. D.2.函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則下列說(shuō)法正確的是()A.函數(shù)在上單調(diào)遞增B.函數(shù)的遞減區(qū)間為C.函數(shù)在處取得極大值D.函數(shù)在處取得極小值3.已知雙曲線(xiàn)離心率為2,過(guò)點(diǎn)的直線(xiàn)與雙曲線(xiàn)C交于A(yíng),B兩點(diǎn),且點(diǎn)P恰好是弦的中點(diǎn),則直線(xiàn)的方程為()A. B.C. D.4.命題“,”否定形式是()A., B.,C., D.,5.用這3個(gè)數(shù)組成沒(méi)有重復(fù)數(shù)字的三位數(shù),則事件“這個(gè)三位數(shù)是偶數(shù)”與事件“這個(gè)三位數(shù)大于342”()A.是互斥但不對(duì)立事件 B.不是互斥事件C.是對(duì)立事件 D.是不可能事件6.橢圓()的右頂點(diǎn)是拋物線(xiàn)的焦點(diǎn),且短軸長(zhǎng)為2,則該橢圓方程為()A. B.C. D.7.《米老鼠和唐老鴨》這部動(dòng)畫(huà)給我們的童年帶來(lái)了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個(gè)圓構(gòu)成米奇的簡(jiǎn)筆畫(huà)形象.已知3個(gè)圓方程分別為:圓圓,圓若過(guò)原點(diǎn)的直線(xiàn)與圓、均相切,則截圓所得的弦長(zhǎng)為()A. B.C. D.8.已知公差不為0的等差數(shù)列中,,且,,成等比數(shù)列,則其前項(xiàng)和取得最大值時(shí),的值為()A.12 B.13C.12或13 D.13或149.動(dòng)點(diǎn)P,Q分別在拋物線(xiàn)和圓上,則的最小值為()A. B.C. D.10.今天是星期四,經(jīng)過(guò)天后是星期()A.三 B.四C.五 D.六11.某雙曲線(xiàn)的一條漸近方程為,且焦點(diǎn)為,則該雙曲線(xiàn)的方程是()A. B.C. D.12.已知直線(xiàn):與雙曲線(xiàn)的兩條漸近線(xiàn)分別相交于A(yíng)、B兩點(diǎn),若C為直線(xiàn)與y軸的交點(diǎn),且,則k等于()A.4 B.6C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線(xiàn)過(guò)點(diǎn),且漸近線(xiàn)方程為,則該雙曲線(xiàn)的標(biāo)準(zhǔn)方程為_(kāi)___________________.14.在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護(hù)衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測(cè)得乙護(hù)衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為_(kāi)__________海里.15.與圓外切于原點(diǎn),且被y軸截得的弦長(zhǎng)為8的圓的標(biāo)準(zhǔn)方程為_(kāi)_________16.已知數(shù)列滿(mǎn)足,且.則數(shù)列的通項(xiàng)公式為_(kāi)______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖所示,第九屆亞洲機(jī)器人錦標(biāo)賽VEX中國(guó)選拔賽永州賽區(qū)中,主辦方設(shè)計(jì)了一個(gè)矩形坐標(biāo)場(chǎng)地ABCD(包含邊界和內(nèi)部,A為坐標(biāo)原點(diǎn)),AD長(zhǎng)為10米,在A(yíng)B邊上距離A點(diǎn)4米的F處放置一只電子狗,在距離A點(diǎn)2米的E處放置一個(gè)機(jī)器人,機(jī)器人行走速度為v,電子狗行走速度為,若電子狗和機(jī)器人在場(chǎng)地內(nèi)沿直線(xiàn)方向同時(shí)到達(dá)場(chǎng)地內(nèi)某點(diǎn)M,那么電子狗將被機(jī)器人捕獲,點(diǎn)M叫成功點(diǎn).(1)求在這個(gè)矩形場(chǎng)地內(nèi)成功點(diǎn)M的軌跡方程;(2)P為矩形場(chǎng)地AD邊上的一動(dòng)點(diǎn),若存在兩個(gè)成功點(diǎn)到直線(xiàn)FP的距離為,且直線(xiàn)FP與點(diǎn)M的軌跡沒(méi)有公共點(diǎn),求P點(diǎn)橫坐標(biāo)的取值范圍.18.(12分)已知數(shù)列{}的首項(xiàng)=2,(n≥2,),,.(1)證明:{+1}為等比數(shù)列;(2)設(shè)數(shù)列{}的前n項(xiàng)和,求證:.19.(12分)如圖,四棱錐中,,且,(1)求證:平面平面;(2)若是等邊三角形,底面是邊長(zhǎng)為3的正方形,是中點(diǎn),求直線(xiàn)與平面所成角的正弦值.20.(12分)已知拋物線(xiàn)C的頂點(diǎn)在坐標(biāo)原點(diǎn),準(zhǔn)線(xiàn)方程為(1)求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;(2)若AB是過(guò)拋物線(xiàn)C的焦點(diǎn)F的弦,以弦AB為直徑的圓與直線(xiàn)的位置關(guān)系是什么?先給出你的判斷結(jié)論,再給出你的證明,并作出必要的圖形21.(12分)如圖,已知圓C與y軸相切于點(diǎn),且被x軸正半軸分成的兩段圓弧長(zhǎng)之比為1∶2(1)求圓C的方程;(2)已知點(diǎn),是否存在弦被點(diǎn)P平分?若存在,求直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由22.(10分)已知函數(shù),當(dāng)時(shí),有極大值3(1)求的值;(2)求函數(shù)的極小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】連結(jié),設(shè),則,,由可求出,進(jìn)而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點(diǎn)為,連結(jié),由橢圓的對(duì)稱(chēng)性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查了橢圓的標(biāo)準(zhǔn)方程求解及橢圓的簡(jiǎn)單幾何性質(zhì),在求解橢圓標(biāo)準(zhǔn)方程時(shí),關(guān)鍵是求解基本量,,.2、C【解析】根據(jù)函數(shù)單調(diào)性與導(dǎo)數(shù)之間的關(guān)系及極值的定義結(jié)合圖像即可得出答案.【詳解】解:根據(jù)函數(shù)的導(dǎo)函數(shù)的圖象可得,當(dāng)時(shí),,故函數(shù)在和上遞減,當(dāng)時(shí),,故函數(shù)在和上遞增,所以函數(shù)在和處取得極小值,在處取得極大值,故ABD錯(cuò)誤,C正確.故選:C.3、C【解析】運(yùn)用點(diǎn)差法即可求解【詳解】由已知得,又,,可得.則雙曲線(xiàn)C的方程為.設(shè),,則兩式相減得,即.又因?yàn)辄c(diǎn)P恰好是弦的中點(diǎn),所以,,所以直線(xiàn)的斜率為,所以直線(xiàn)的方程為,即.經(jīng)檢驗(yàn)滿(mǎn)足題意故選:C4、C【解析】利用含有一個(gè)量詞的命題的否定的定義求解.【詳解】因?yàn)槊}“,是特稱(chēng)命題,所以其否定是全稱(chēng)命題,即為,故選:C5、B【解析】根據(jù)題意列舉出所有可能性,進(jìn)而根據(jù)各類(lèi)事件的定義求得答案.【詳解】由題意,將2,3,4組成一個(gè)沒(méi)有重復(fù)數(shù)字的三位數(shù)的情況有:{234,243,324,342,423,432},其中偶數(shù)有{234,324,342,432},大于342的有{423,432}.所以?xún)蓚€(gè)事件不是互斥事件,也不是對(duì)立事件.故選:B.6、A【解析】求得拋物線(xiàn)的焦點(diǎn)從而求得,再結(jié)合題意求得,即可寫(xiě)出橢圓方程.【詳解】因?yàn)閽佄锞€(xiàn)的焦點(diǎn)坐標(biāo)為,故可得;又短軸長(zhǎng)為2,故可得,即;故橢圓方程為:.故選:.7、A【解析】設(shè)直線(xiàn),利用直線(xiàn)與圓相切,求得斜率,再利用弦長(zhǎng)公式求弦長(zhǎng)【詳解】設(shè)過(guò)點(diǎn)的直線(xiàn).由直線(xiàn)與圓、圓均相切,得解得(1).設(shè)點(diǎn)到直線(xiàn)的距離為則(2).又圓的半徑直線(xiàn)截圓所得弦長(zhǎng)結(jié)合(1)(2)兩式,解得8、C【解析】設(shè)等差數(shù)列的公差為q,根據(jù),,成等比數(shù)列,利用等比中項(xiàng)求得公差,再由等差數(shù)列前n項(xiàng)和公式求解.【詳解】設(shè)等差數(shù)列的公差為q,因?yàn)?,且,,成等比?shù)列,所以,解得,所以,所以當(dāng)12或13時(shí),取得最大值,故選:C9、B【解析】設(shè),根據(jù)兩點(diǎn)間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設(shè),圓化簡(jiǎn)為,即圓心為(0,4),半徑為,所以點(diǎn)P到圓心的距離,令,則,令,,為開(kāi)口向上,對(duì)稱(chēng)軸為的拋物線(xiàn),所以的最小值為,所以,所以的最小值為.故選:B10、C【解析】求出二項(xiàng)式定理的通項(xiàng)公式,得到除以7余數(shù)是1,然后利用周期性進(jìn)行計(jì)算即可【詳解】解:一個(gè)星期的周期是7,則,即除以7余數(shù)是1,即今天是星期四,經(jīng)過(guò)天后是星期五,故選:11、D【解析】設(shè)雙曲線(xiàn)的方程為,利用焦點(diǎn)為求出的值即可.【詳解】因?yàn)殡p曲線(xiàn)的一條漸近方程為,且焦點(diǎn)為,所以可設(shè)雙曲線(xiàn)的方程為,則,,所以該雙曲線(xiàn)方程為.故選:D.12、D【解析】先求出雙曲線(xiàn)的漸近線(xiàn)方程,然后分別與直線(xiàn)聯(lián)立,求出A、B兩點(diǎn)的橫坐標(biāo),再利用可求解.【詳解】由雙曲線(xiàn)方程可知其漸近線(xiàn)方程為:,當(dāng)時(shí),與聯(lián)立,得,同理得,由,且可知,所以有,解得.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】依題意,設(shè)所求的雙曲線(xiàn)的方程為.點(diǎn)為該雙曲線(xiàn)上的點(diǎn),.該雙曲線(xiàn)的方程為:,即.故本題正確答案是.14、【解析】利用正弦定理求得甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離.【詳解】,設(shè)甲乙距離,由正弦定理得.故答案為:15、;【解析】設(shè)所求圓的圓心為,根據(jù)兩圓外切于原點(diǎn)可知兩圓心與原點(diǎn)共線(xiàn),再根據(jù)弦長(zhǎng)列出方程組求出即可.【詳解】設(shè)所求圓的圓心為,因?yàn)閳A的圓心為,與原點(diǎn)連線(xiàn)的斜率為,又所求圓與已知圓外切于原點(diǎn),,①所以所求圓的半徑滿(mǎn)足,又被y軸截得的弦長(zhǎng)為8,②由①②解得,所以圓的方程為.故答案為:16、【解析】倒數(shù)型求數(shù)列通項(xiàng)公式,第一步求倒數(shù),第二步構(gòu)造數(shù)列,求通項(xiàng).【詳解】因?yàn)?,所以,所以?shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,所以故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)分別以為軸,建立平面直角坐標(biāo)系,由題意,利用兩點(diǎn)間的距離公式可得答案.(2)由題意可得點(diǎn)的軌跡所在圓的圓心到直線(xiàn)的距離,點(diǎn)的軌跡與軸的交點(diǎn)到直線(xiàn)的距離,從而可得答案.【小問(wèn)1詳解】分別以為軸,建立平面直角坐標(biāo)系,則,設(shè)成功點(diǎn),可得即,化簡(jiǎn)得因?yàn)辄c(diǎn)需在矩形場(chǎng)地內(nèi),所以故所求軌跡方程為【小問(wèn)2詳解】設(shè),直線(xiàn)方程為直線(xiàn)FP與點(diǎn)M軌跡沒(méi)有公共點(diǎn),則圓心到直線(xiàn)的距離大于依題意,動(dòng)點(diǎn)需滿(mǎn)足兩個(gè)條件:點(diǎn)的軌跡所在圓的圓心到直線(xiàn)的距離即,解得②點(diǎn)的軌跡與軸的交點(diǎn)到直線(xiàn)的距離即,解得綜上所述,P點(diǎn)橫坐標(biāo)的取值范圍是18、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)利用已知條件證明為常數(shù)即可;(2)求出和通項(xiàng)公式,再求出通項(xiàng)公式,利用裂項(xiàng)相消法可求,判斷的單調(diào)性即可求其范圍.【小問(wèn)1詳解】∵=2,(n≥2,),∴當(dāng)n≥2時(shí),(常數(shù)),∴數(shù)列{+1}是公比為3的等比數(shù)列;【小問(wèn)2詳解】由(1)知,數(shù)列{+1}是以3為首項(xiàng),以3為公比的等比數(shù)列,∴,∴,∴∵,∴∴,∴∴.當(dāng)n≥2時(shí),∴{}為遞增數(shù)列,故的最小值為,∴.19、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)線(xiàn)面垂直的判定定理,結(jié)合面面垂直的判定定理進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,利用空間向量夾角公式,結(jié)合線(xiàn)面角定義進(jìn)行求解即可.【小問(wèn)1詳解】∵,∴,,又,∴,∵,面,∴面,平面ABCD,平面平面【小問(wèn)2詳解】∵平面平面,交AD于點(diǎn)F,平面,平面平面,∴平面,以為原點(diǎn),,的方向分別為軸,軸的正方向建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,求得法向量為,由,所以直線(xiàn)與平面所成角的正弦值為.20、(1);(2)相切,證明過(guò)程、圖形見(jiàn)解析.【解析】(1)根據(jù)拋物線(xiàn)的準(zhǔn)線(xiàn)方程,結(jié)合拋物線(xiàn)標(biāo)準(zhǔn)方程進(jìn)行求解即可;(2)設(shè)出直線(xiàn)AB的方程與拋物線(xiàn)方程聯(lián)立,利用一元二次方程根與系數(shù)關(guān)系,結(jié)合圓的性質(zhì)進(jìn)行求解即可.【小問(wèn)1詳解】因?yàn)閽佄锞€(xiàn)C的頂點(diǎn)在坐標(biāo)原點(diǎn),準(zhǔn)線(xiàn)方程為,所以設(shè)拋物線(xiàn)C的標(biāo)準(zhǔn)方程為:,因?yàn)樵搾佄锞€(xiàn)的準(zhǔn)線(xiàn)方程為,所以有,所以?huà)佄锞€(xiàn)C的標(biāo)準(zhǔn)方程;小問(wèn)2詳解】以弦AB為直徑的圓與直線(xiàn)相切,理由如下:因?yàn)锳B是過(guò)拋物線(xiàn)C的焦點(diǎn)F的弦,所以直線(xiàn)AB的斜率不為零,設(shè)橢圓的焦點(diǎn)坐標(biāo)為,設(shè)直線(xiàn)AB的方程為:,則有,設(shè),則有,因此,所以弦AB為直徑的圓的圓心的橫坐標(biāo)為:,以弦AB為直徑的圓的直徑為:所以弦AB為直徑的圓的半徑,以弦AB為直徑的圓的圓心到準(zhǔn)線(xiàn)的距離為:,所以以弦AB為直徑的圓與直線(xiàn)相切.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用一元二次方程的根與系數(shù)關(guān)系是解題的關(guān)鍵.21、(1).(2).【解析】(1)由已知得圓心C在直線(xiàn)上,設(shè)圓C與x軸的交點(diǎn)分別為E、F,則有,,圓心C的坐標(biāo)為(2,1),由此求得圓C的標(biāo)準(zhǔn)方程;(2)假設(shè)存在弦被點(diǎn)P平分,有,由此求得直線(xiàn)AB的斜率可得其方程再檢驗(yàn),直線(xiàn)AB與圓C是否相交即可.小問(wèn)1詳解】解:因?yàn)閳AC與y軸相切于點(diǎn),所以圓心C在直線(xiàn)上,設(shè)圓C與x軸的交點(diǎn)分別為E、F,由圓C被x軸分成的兩段弧長(zhǎng)之比為2∶1,得,所以,圓心C的坐標(biāo)為(2,1),所以圓C的方程為;【小問(wèn)2詳解】解:因?yàn)辄c(diǎn),有,所以點(diǎn)P在圓C的內(nèi)部,假設(shè)存在弦被點(diǎn)P平分,則,又,所以,所以直線(xiàn)AB的方程為,即,檢驗(yàn),圓心
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨時(shí)物業(yè)管理員協(xié)議
- 賓館租賃合同:企業(yè)員工培訓(xùn)
- 庭院裝修工程施工合同
- 建筑項(xiàng)目合同安全檢查
- 文物科普教育活動(dòng)保護(hù)協(xié)議
- 臨時(shí)出納工作合同財(cái)務(wù)兼職
- 行紀(jì)合同范本指南工具
- 澳門(mén)(2024年-2025年小學(xué)五年級(jí)語(yǔ)文)統(tǒng)編版小升初模擬((上下)學(xué)期)試卷及答案
- 九月份開(kāi)學(xué)典禮的致辭范文(5篇)
- 《谷歌公司的管理》課件
- 小學(xué)道德與法治 五年級(jí)上冊(cè) 傳統(tǒng)美德源遠(yuǎn)流長(zhǎng) 天下興亡 匹夫有責(zé)的愛(ài)國(guó)情懷 教學(xué)設(shè)計(jì)
- 國(guó)開(kāi)作業(yè)《公共部門(mén)人力資源管理》形考任務(wù)4:撰寫(xiě)課程學(xué)習(xí)總結(jié)(第1-9章權(quán)重25%)參考882
- 暈厥護(hù)理查房(與“暈厥”相關(guān)共28張)課件
- 某蔬菜大棚鋼結(jié)構(gòu)施工組織設(shè)計(jì)
- 全國(guó)護(hù)士延續(xù)注冊(cè)體檢表-(正式)
- 礦山三違識(shí)別表
- 危房封條格式
- 智慧校園項(xiàng)目—數(shù)據(jù)大腦等平臺(tái)建設(shè)方案
- 300mw汽輪機(jī)畢業(yè)設(shè)計(jì)論文
- 2022年甘肅省二級(jí)消防工程師《消防技術(shù)綜合能力》考試題庫(kù)及答案(含真題)
- 物資核銷(xiāo)細(xì)則
評(píng)論
0/150
提交評(píng)論