2023-2024學(xué)年上海市嘉定區(qū)封浜高中高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第1頁
2023-2024學(xué)年上海市嘉定區(qū)封浜高中高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第2頁
2023-2024學(xué)年上海市嘉定區(qū)封浜高中高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第3頁
2023-2024學(xué)年上海市嘉定區(qū)封浜高中高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第4頁
2023-2024學(xué)年上海市嘉定區(qū)封浜高中高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年上海市嘉定區(qū)封浜高中高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知斜率為1的直線l過橢圓的右焦點,交橢圓于A,B兩點,則弦AB的長為()A. B.C. D.2.已知三棱柱的所有棱長均為2,平面,則異面直線,所成角的余弦值為()A. B.C. D.3.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.外離4.設(shè)拋物線的焦點為F,準(zhǔn)線為l,P為拋物線上一點,,A為垂足.如果直線AF的斜率是,那么()A B.C.16 D.85.“”是“方程為雙曲線方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.金剛石的成分為純碳,是自然界中天然存在的最堅硬物質(zhì),它的結(jié)構(gòu)是由8個等邊三角形組成的正八面體.若某金剛石的棱長為2,則它的體積為()A. B.C. D.7.已知圓M與直線與都相切,且圓心在上,則圓M的方程為()A. B.C. D.8.已知,則的最小值是()A.3 B.8C.12 D.209.已知雙曲線,則雙曲線的漸近線方程為()A. B.C. D.10.?dāng)?shù)學(xué)家歐拉1765年在其所著的《三角形幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知△ABC的頂點分別為,,,則△ABC的歐拉線方程為()A. B.C. D.11.為了解青少年視力情況,統(tǒng)計得到名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數(shù),葉表示十分位數(shù),則該組數(shù)據(jù)的中位數(shù)是()A. B.C. D.12.已知是函數(shù)的導(dǎo)函數(shù),則()A0 B.2C.4 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知的頂點A(1,5),邊AB上的中線CM所在的直線方程為,邊AC上的高BH所在直線方程為,求(1)頂點C的坐標(biāo);(2)直線BC的方程;14.已知圓C,直線l:,若圓C上恰有四個點到直線l的距離都等于1.則b的取值范圍為___.15.若圓和圓的公共弦所在的直線方程為,則______16.過點,且垂直于的直線方程為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列{an}的前n項和為Sn,數(shù)列{bn}滿足:點(n,bn)在曲線y=上,a1=b4,___,數(shù)列{}的前n項和為Tn從①S4=20,②S3=2a3,③3a3﹣a5=b2這三個條件中任選一個,補充到上面問題的橫線上并作答(1)求數(shù)列{an},{bn}的通項公式;(2)是否存在正整數(shù)k,使得Tk>,且bk>?若存在,求出滿足題意的k值;若不存在,請說明理由18.(12分)如圖,已知頂點,,動點分別在軸,軸上移動,延長至點,使得,且.(1)求動點的軌跡;(2)過點分別作直線交曲線于兩點,若直線的傾斜角互補,證明:直線的斜率為定值;(3)過點分別作直線交曲線于兩點,若,直線是否經(jīng)過定點?若是,求出該定點,若不是,說明理由.19.(12分)如圖,在四棱錐中P﹣ABCD中,底面ABCD是邊長為2的正方形,BC⊥平面PAB,PA⊥AB,PA=2(1)求證:PA⊥平面ABCD;(2)求平面PAD與平面PBC所成角的余弦值20.(12分)已知函數(shù)(Ⅰ)解關(guān)于的不等式;(Ⅱ)若關(guān)于的不等式恒成立,求實數(shù)的取值范圍21.(12分)已知函數(shù),曲線y=f(x)在點(0,4)處的切線方程為(1)求a,b的值;(2)求f(x)的極大值22.(10分)已知直線經(jīng)過點,且滿足下列條件,求相應(yīng)的方程.(1)過點;(2)與直線垂直.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意求得直線l的方程,設(shè),聯(lián)立直線與橢圓的方程,利用韋達(dá)定理求得,再利用弦長公式即可得出答案.【詳解】由橢圓知,,所以,所以右焦點坐標(biāo)為,則直線的方程為,設(shè),聯(lián)立,消y得,,則,所以.即弦AB長為.故選:C.2、A【解析】建立空間直角坐標(biāo)系,利用向量法求解【詳解】以為坐標(biāo)原點,平面內(nèi)過點且垂直于的直線為軸,所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如圖所示,則,,,,∴,,∴,∴異面直線,所成角的余弦值為.故選:A3、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,根據(jù)圓心距和半徑的關(guān)系,判斷兩圓的位置關(guān)系.【詳解】圓的標(biāo)準(zhǔn)方程為,圓的標(biāo)準(zhǔn)方程為,兩圓的圓心距為,即圓心距等于兩圓半徑之和,故兩圓外切,故選:C.4、D【解析】由題可得方程,進(jìn)而可得點坐標(biāo)及點坐標(biāo),利用拋物線定義即求【詳解】∵拋物線方程為,∴焦點F(2,0),準(zhǔn)線l方程為x=?2,∵直線AF的斜率為,直線AF的方程為,由,可得,∵PA⊥l,A為垂足,∴P點縱坐標(biāo)為,代入拋物線方程,得P點坐標(biāo)為,∴.故選:D.5、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”的原則進(jìn)行判斷即可.【詳解】因方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.6、C【解析】由幾何關(guān)系先求出一個正四面體的高,再結(jié)合錐體體積公式即可求解正八面體的體積.【詳解】如圖,設(shè)底面中心為,連接,由幾何關(guān)系知,,則正八面體體積為.故選:C7、A【解析】由題可設(shè),結(jié)合條件可得,即求.【詳解】∵圓心在上,∴可設(shè)圓心,又圓M與直線與都相切,∴,解得,∴,即圓的半徑為1,圓M的方程為.故選:A.8、A【解析】利用基本不等式進(jìn)行求解即可.【詳解】因為,所以,當(dāng)且僅當(dāng)時取等號,即當(dāng)時取等號,故選:A9、A【解析】求出、的值,可得出雙曲線的漸近線方程.【詳解】在雙曲線中,,,因此,該雙曲線的漸近線方程為.故選:A.10、A【解析】求出重心坐標(biāo),求出AB邊上高和AC邊上高所在直線方程,聯(lián)立兩直線可得垂心坐標(biāo),即可求出歐拉線方程.【詳解】由題可知,△ABC的重心為,可得直線AB的斜率為,則AB邊上高所在的直線斜率為,則方程為,直線AC的斜率為,則AC邊上高所在的直線斜率為2,則方程為,聯(lián)立方程可得△ABC的垂心為,則直線GH斜率為,則可得直線GH方程為,故△ABC的歐拉線方程為.故選:A.11、B【解析】將樣本中的數(shù)據(jù)由小到大進(jìn)行排列,利用中位數(shù)的定義可得結(jié)果.【詳解】將樣本中的數(shù)據(jù)由小到大進(jìn)行排列,依次為:、、、、、、、、、,因此,這組數(shù)據(jù)的中位數(shù)為.故選:B.12、D【解析】由導(dǎo)數(shù)運算法則求出導(dǎo)函數(shù),再計算導(dǎo)數(shù)值【詳解】由題意,,所以故選:D二、填空題:本題共4小題,每小題5分,共20分。13、(1);(2).【解析】(1)設(shè)出點C的坐標(biāo),進(jìn)而根據(jù)點C在中線上及求得答案;(2)設(shè)出點B的坐標(biāo),進(jìn)而求出點M的坐標(biāo),然后根據(jù)中線的方程及求出點B的坐標(biāo),進(jìn)而求出直線BC的方程.【小問1詳解】設(shè)C點的坐標(biāo)為,則由題知,即.【小問2詳解】設(shè)B點的坐標(biāo)為,則中點M坐標(biāo)代入中線CM方程則由題知,即,又,則,所以直線BC方程為.14、【解析】根據(jù)圓的幾何性質(zhì),結(jié)合點到直線距離公式進(jìn)行求解即可.【詳解】圓C:的半徑為3,圓心坐標(biāo)為:設(shè)圓心到直線l:的距離為,要想圓C上恰有四個點到直線l的距離都等于1,只需,即,所以.故答案為:.15、【解析】由兩圓公共弦方程,將兩圓方程相減得到,結(jié)合已知列方程組求、,即可得答案.【詳解】由題設(shè),兩圓方程相減可得:,即為公共弦,∴,可得,∴.故答案為:.16、【解析】求出,可得垂直于的直線的斜率為,再利用點斜式可得結(jié)果.【詳解】因為,所以,所以垂直于的直線的斜率為,垂直于的直線方程為,化為,故答案為.【點睛】對直線位置關(guān)系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1);(2),這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)條件選擇見解析;an=2n,bn=25﹣n.(2)不存在,理由見解析.【解析】(1)把點(n,bn)代入曲線y=可得到bn=25﹣n,進(jìn)而求出a1,設(shè)等差數(shù)列{an}的公差為d,選①S4=20,利用等差數(shù)列的前n項和公式可求出d,從而得到an;若選②S3=2a3,利用等差數(shù)列的前n項和公式可求出d,從而得到an;若選③3a3﹣a5=b2,利用等差數(shù)列的通項公式公式可求出d,從而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂項相消法求出Tn=1﹣,不等式無解,即不存在正整數(shù)k,使得Tk>,且bk>【小問1詳解】解:∵點(n,bn)在曲線y=上,∴=25﹣n,∴a1=b4=25﹣4=2,設(shè)等差數(shù)列{an}的公差為d,若選①S4=20,則S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若選②S3=2a3,則S3=a1+a2+a3=2a3,∴a1+a2=a3,∴2+2+d=2+2d,解得d=2,∴an=2+2(n﹣1)=2n;若選③3a3﹣a5=b2,則3(a1+2d)﹣(a1+4d)=25﹣2=8,∴2a1+2d=8,即2×2+2d=8,∴d=2,∴an=2+2(n﹣1)=2n;【小問2詳解】解:由(1)可知Sn===n(1+n),∴==,∴Tn=(1﹣)+()+……+()=1﹣,假設(shè)存在正整數(shù)k,使得Tk>,且bk>,∴,即,此不等式無解,∴不存在正整數(shù)k,使得Tk>,且bk>18、(1);(2)證明見解析;(3).【解析】(1)設(shè)點M,P,Q的坐標(biāo),將向量進(jìn)行坐標(biāo)化,整理即可得軌跡方程;(2)設(shè)點,,直線的傾斜角互補,則兩直線斜率互為相反數(shù),用斜率公式計算得到,即可計算kAB;(3)若,由兩直線斜率積為-1,可得到關(guān)于與的等量關(guān)系,寫出直線AB的方程,將等量關(guān)系代入直線方程整理可得直線AB經(jīng)過的定點【詳解】(1)設(shè),,.由,得,即.因為,所以,所以.所以動點的軌跡為拋物線,其方程為.(2)證明:設(shè)點,,若直線的傾斜角互補,則兩直線斜率互為相反數(shù),又,,所以,,整理得,所以.(3)因為,所以,即,①直線的方程為:,整理得:,②將①代入②得,即,當(dāng)時,即直線經(jīng)過定點.【點睛】本題考查直接法求軌跡方程,考查直線斜率為定值的求法和直線恒過定點問題.19、(1)證明見解析;(2).【解析】(1)根據(jù)線面垂直的判定定理來證得平面.(2)建立空間直角坐標(biāo)系,利用向量法來求得平面與平面所成角的余弦值.【小問1詳解】由于平面,所以,由于,所以平面.【小問2詳解】建立如圖所示空間直角坐標(biāo)系,平面的法向量為,,設(shè)平面的法向量為,則,故可設(shè).設(shè)平面與平面所成角為,則.20、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零點法去絕對值,然后再解不等式.(Ⅱ)將原函數(shù)轉(zhuǎn)化為分段函數(shù),再結(jié)合函數(shù)圖像求得其最小值.將恒成立轉(zhuǎn)化為試題解析:(Ⅰ)或或或所以原不等式解集為(Ⅱ),由函數(shù)圖像可知,所以要使恒成立,只需考點:1絕對值不等式;2恒成立問題;3轉(zhuǎn)化思想21、(1)a=4,b=4(2)【解析】(1)由題意得到關(guān)于的方程組,求解方程組即可求出答案.(2)結(jié)合(1)中求得的函數(shù)解析式,求導(dǎo)得到的單調(diào)性,可得當(dāng)x=-2時,函數(shù)f(x)取得極大值.【小問1詳解】由已知得f(0)=4,f′(0)=4,故b=4,a+b=8從而a=4,b=4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論