




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
BoardofGovernors
GOV/INF/2021/32-GC(65)/INF/6*
GeneralConference
GeneralDistribution
Original:English
Forofficialuseonly
INTERNATIONALSTATUSANDPROSPECTSFORNUCLEARPOWER2021
ReportbytheDirectorGeneral
Thedocumenthasbeenre-postedonGovAtomandonIAEA.orgwiththeadditionofthiscoverpage.
AtomsforPeaceandDevelopment
BoardofGovernors
GeneralConference
GOV/INF/2021/32-GC(65)/INF/6
Date:16July2021
GeneralDistribution
Original:English
Forofficialuseonly
Item18oftheConference'sprovisionalagenda
(GC(65)/1andAdd.1)
InternationalStatusandProspectsforNuclearPower2021
ReportbytheDirectorGeneral
Summary
GeneralConferenceResolutionGC(50)/RES/13requestedtheSecretariattoprovide,onabiennialbasis,acomprehensivereportontheinternationalstatusandprospectsfornuclearpower,beginningin2008.GeneralConferenceresolutionGC(60)/RES/12,issuedinSeptember2016,requestedtheSecretariattocontinuetopublishtheInternationalStatusandProspectsforNuclearPowerreportonafour-yearbasis,startingin2017.ThisreportrespondstoresolutionGC(60)/RES/12.
GOV/INF/2021/32-GC(65)/INF/6
Page1
InternationalStatusandProspectsforNuclearPower2021
ReportbytheDirectorGeneral
CleanenergyforClimateandDevelopment:SocioeconomicContext
A.1.TheEvolvingContext
TherehavebeensignificantnationalandinternationaldevelopmentsunderscoringtheroleofnuclearpowerinmitigatingclimatechangeandachievingsustainabledevelopmentsinceInternationalStatusandProspectsforNuclearPower2017(documentGOV/INF/2017/12-GC(61)/INF/8)wasissued.Thissectionhighlightssomeofthemostimportantdevelopmentsaffectingthestatusandprospectsfornuclearpower.
A.1.2.InternationalDevelopments
Thereisgrowingglobalrecognitionthataccesstoaffordable,reliable,sustainableandmodernenergyforall(UnitedNationsSustainableDevelopmentGoal(SDG)7)iscriticaltoachievingvirtuallyalloftheother16SDGs.TheSDGs,adoptedbyworldleadersinSeptember2015,calluponallcountriestomobilizeeffortsupto2030toendallformsofpoverty,fightinequalitiesandtackleclimatechange.Theseeffortsgohandinhandwithstrategiesthatbuildeconomicgrowthandaddresssocialneeds,includingeducation,health,socialprotectionandjobopportunities,whiletacklingclimatechangeandenvironmentalprotection.Accordingtothe
UnitedNationsDepartmentofEconomicandSocialAffairs
(UNDESA),whichactsasthesecretariatfortheSDGs,SDG7iscrucialtoachievingalmostalloftheotherSDGs,“frompovertyeradicationviaadvancementsinhealth,education,watersupplyandindustrializationtomitigatingclimatechange”.ThatsamepointhasbeenrepeatedlyaffirmedbytheInternationalEnergyAgency(IEA)oftheOrganisationforEconomicCo-operationandDevelopment(OECD),whichinMarch2018
stated
that“energyisattheheartofmanyoftheseSustainableDevelopmentGoals–fromexpandingaccesstoelectricity,toimprovingcleancookingfuels,fromreducingwastefulenergysubsidiestocurbingdeadlyairpollutionthatprematurelykillsmillionsaroundtheworld”.
Estimationsofhowmuchcarbondioxide(CO2)hasbeeneffectivelyavoidedbytheuseofnuclearpowerinthelast50yearsvarybetween70gigatonnes(Gt)and78Gt,anddependonwhattechnologieswouldhavebeendeployedifnuclearpowerplants(NPPs)hadnotbeenbuilt.Calculatingavoidedemissionsfromthecurrentinstalledfleetiscomplex,sincethealternativetonuclearpowercouldrangefromgastoacombinationofgasandrenewables.Between1970and2010,theclearalternativestonuclearpowerwereoil,coalandlater,gas.Countriesthatdeployednuclearonalargescale,suchas
GOV/INF/2021/32-GC(65)/INF/6
Page2
FranceandSweden,managedtodecarbonizetheirelectricitymixintwotothreedecades.In2019,nuclearpowerproduced10.4%oftheworld’selectricity,with2657terawatt-hours(TWh)oflowcarbonelectricityproduced.Hadthislevelofgenerationbeenproducedbygas,about1.5GtCO2wouldhavebeenemitted.Lifecycleanalysesofelectricitygenerationtechnologiesshowthatnuclearpowerisamongtheleastcarbonintensiveofalltechnologies,onaparwithhydroandwindpower.Nuclearpowerremainsakeyoptionfordecarbonizingtheelectricitysectorinthedecadestocome,togetherwithvariablerenewablessuchaswindandsolarphotovoltaics(PV).
Internationalacknowledgementofthesignificantroleplayedbynuclearpowerinclimatechangemitigationandsustainabledevelopmenthasbeensteadilyadvancing.ManynationalandinternationalorganizationshaveanalysedtheneedstodecarbonizetheenergysystemconsistentwithachievingthegoalsoftheParisAgreement;andmanyoftheirscenarioscallforasubstantialincreaseinglobalnuclearpowercapacity,includingallfourillustrativescenariosdescribedbytheIntergovernmentalPanelonClimateChange(IPCC)inits2018SpecialReportonGlobalWarmingof1.5°C.Indeed,toachievethe1.5°Cobjective,thefourIPCCillustrativescenarioscallforanincreaseinnuclearpowercapacityofbetween60%and500%by2050.Atthesametime,nuclearpowerisincreasinglyseenasanimportantoptionforthedevelopingworldtomeetrisingenergydemandandimprovelivingstandardswithoutincreasinggreenhousegas(GHG)emissions.AccordingtotheIEA’sSustainableDevelopmentScenariofromitsWorldEnergyOutlook2019,nuclearpowerneedstoexpandsignificantlybeyonditshistoricalmarketsembarkingcountries,includingdevelopingones,andalsobeyondthepowersectoriftheworldistohaveareasonablechanceofmeetingclimatechangegoalsaswellastheotherenergyrelatedSDGs.
InOctober2019,theAgencyorganizeditsfirstInternationalConferenceonClimateChangeandtheRoleofNuclearPower.Theevent,whichdrewmorethan500participantsfrom79MemberStatesand17internationalorganizations,forthefirsttimebroughttogethertheheadsofthemajorinternationalorganizationsdealingwithenergyandclimatechange(UnitedNationsFrameworkConventiononClimateChange,IPCC,IEAandUNDESA)fordiscussionsontheroleofnuclearpowerinaddressingglobalwarming.Nuclearpowerhasamajorroletoplayindecarbonizingtheenergysectortoachieveglobalclimategoalsbutwillneedenablingpoliciestoachieveitsfullpotential,saidConferencePresidentMikhailChudakov,IAEADeputyDirectorGeneralandHeadoftheDepartmentofNuclearEnergy,inhisconcludingsummary.
GOV/INF/2021/32-GC(65)/INF/6
Page3
InitsMay2019reportNuclearPowerinaCleanEnergySystem,theIEAwarnedthatafailuretomaketimelydecisionsonnuclearpowerwouldraisethecostsofthecleanenergytransitionwhilealsomakingitmuchmoredifficulttoachievethenet-zerogoals.TheIEAreiteratedthatsamepointinitslandmarkreportNetZeroby2050:ARoadmapfortheGlobalEnergySector,issuedinMay2021,whichdescribesapotentialpathwayfortheworldtoeliminategreenhousegasemissionsbymid-century.Thatreportseesnucleargeneratingcapacitynearlydoublingby2050,withannualgridconnectionsratereachingsome30gigawattsinsomeyears,evenasnuclearpower’soverallshareofglobalelectricityproductiondeclinesslightlyto8%in2050.Therestoftheelectricitymixin2050is,accordingtothisNetZeroscenario,dominatedbyrenewables,inparticularsolarandwind.ButtheIEAalsopointedoutinarecentreportTheroleofcriticalmineralsincleanenergytransitions,thatwind,solarandbatterytechnologiesareverydependentoncriticalminerals,theavailabilityofwhichcouldslowdownthedeploymentofthesetechnologies.Nuclearpower,ontheotherhand,isalongwithhydropower,oneofthelowcarbontechnologieswiththelowestmineralintensity.
TheMassachusettsInstituteofTechnology(MIT)EnergyInitiative,inareportpublishedinSeptember2018,calledforamajorincreaseinglobalnucleargeneratingcapacitytomeetnet-zerogoals.Toachievethisincrease,thereportoutlinedpoliciesthatwouldestablishamorelevelplayingfieldfornuclearpowertocompetewithotherlowcarbonenergytechnologies,aswellasstepsneededtolowerthecostofnuclearnewbuildprojects.LiketheIEAreport,theMITstudyconcludedthatwithoutasignificantcontributionfromdispatchablenuclearpower,thecleanenergytransitionwouldbemuchmoreexpensiveandmoredifficulttoachieve.
AccordingtotheDecember2020reportProjectedCostsofGeneratingElectricity,jointlyproducedbytheIEAandtheOECDNuclearEnergyAgency,extendingtheoperationallifetimeofexistingNPPsisthemostcost-effectiveinvestmentsinlowcarbonelectricitygeneration.Thereportnotedthatwhilehydropowercanprovidesimilarcontributionsatcomparablecosts,itremainshighlydependentonthenaturalresourcesofindividualcountries.
AccordingtoaMarch2021reportbytheUnitedNationsEconomicCommissionforEurope,nuclearenergyisan“indispensabletool”forachievingtheSDGs,withavitalroletoplayinprovidingaffordableenergy,mitigatingclimatechange,eliminatingpoverty,achievingzerohunger,generatingeconomicgrowth,andprovidingbothindustrialinnovationandcleanwater.Reliablenuclearenergycanbeacriticalpartofdecarbonizedenergysystemsforcountriesseekingtomeetclimatechangeandsustainabledevelopmentgoals,accordingtothereport,entitledApplicationoftheUnitedNationsFrameworkClassificationforResourcesandtheUnitedNationsResourceManagementSystem:UseofNuclearFuelResourcesforSustainableDevelopment–EntryPathways.
TheJointResearchCentre(JRC),thescienceandknowledgeserviceoftheEuropeanCommission,saidinaMarch2021technicalassessmentthat“thereisnoscience-basedevidencethatnuclearenergydoesmoreharmtohumanhealthortotheenvironmentthanother(lowcarbon)electricityproductiontechnologiesalreadyincludedintheEUTaxonomyasactivitiessupportingclimatechangemitigation”.Theassessmentwascarriedoutwiththerespecttothe‘donosignificantharm’criteriaoftheEuropeanUnion’s‘TaxonomyRegulation’,whichestablishestheframeworkforfacilitatingsustainableinvestmentsandwilleventuallyprovidethefoundationforscalinguplowcarbonenergyinvestmentsacrosstheEuropeanUnion.TheJRC
report
cited2016datashowingthatnuclearpowerperformsverywellinevaluationsofitshealthimpactscomparedwithotherenergysources,usingthedisability-adjustedlifeyearmeasureofoveralldiseaseburdenexpressedasthecumulativenumberofyearslostduetoillhealth,disabilityorearlydeath.
Investmentsincleanenergysourcessuchassolar,windandnuclearhaveanimpactongrossdomesticproduct(GDP)thatistwotoseventimesstrongerthanspendingonfossilsourcessuchasgas,coalandoil,accordingtoaworkingpaperpublishedbytheInternationalMonetaryFund(IMF)inMarch
GOV/INF/2021/32-GC(65)/INF/6
Page4
2021,entitledBuildingBackBetter:HowBigAreGreenSpendingMultipliers?.Nuclearpowerproducedthebiggesteconomicmultipliereffectofanycleanenergysource,thepapersaid,addingthatnuclearpowerproducesabout25%moreemploymentperunitofelectricitythanwindpowerandthatworkersinthenuclearsectorearnone-thirdmorethanthoseintherenewableenergyindustry.
B. NuclearPowerToday
Attheendof2020,theworld’stotalnuclearpowercapacitywas392.6GW(e)
1
,generatedby442operationalnuclearpowerreactorsin32countries.Countriesdemonstratedadaptabilitytothecoronavirusdisease(COVID-19)pandemicbytakingeffectivemeasures,reflectingstrongorganizationalculture.Attheoutsetofthepandemicinearly2020,theAgencyestablishedtheCOVID-
NuclearPowerPlantOperatingExperienceNetworktoshareinformationonmeasurestakentomitigatethepandemicanditsimpactontheoperationofNPPs.Noneofthe32countrieswithoperatingNPPsreportedthatthepandemichadinducedanoperationaleventimpactingsafeandreliableNPPoperation.
Nuclearpowersupplied2553.2terawatt-hoursofGHGemission-freeelectricityin2020,accountingforabout10%oftotalglobalelectricitygenerationandnearlyathirdoftheworld’slowcarbonelectricityproduction.
Some5.5GW(e)ofnewnuclearcapacitywasconnectedtothegrid,fromfivenewpressurizedwaterreactors(PWRs):1110megawatts(electrical)(MW(e))atBelarusian?1inBelarus,1000MW(e)atTianwan-5and1000MW(e)atFuqing?5inChina,1066MW(e)atLeningrad2-2intheRussianFederationand1345MW(e)atBarakah-1intheUnitedArabEmirates.Thestart-upofBelarusian-1in
__________________________________________________________________________________
GW(e),orgigawatt(electrical),equalsonethousandmillionwattsofelectricalpower.AlldataonnuclearpowerreactorsasreportedtotheIAEAPowerReactorInformationSystem(PRIS)asof1June2021.
GOV/INF/2021/32-GC(65)/INF/6
Page5
BelarusandofBarakah-1intheUnitedArabEmiratesmarkedthefirstinstancesofnuclearelectricitygenerationinthesetwocountries.
Theworld’sfirstadvancedsmallmodularreactor(SMR)andonlyfloatingNPP,AkademikLomonosov,startedcommercialoperationin2020.ItislocatedjustofftheArcticcoastintheRussianFederationandfeaturestwo35(MW(e))KLT-40SSMRunits.
Globally,some89.5%ofoperationalnuclearpowercapacitycomprisedlightwatermoderatedandcooledreactortypes;6%wereheavywatermoderatedandcooledreactortypes;2%werelightwatercooled,graphitemoderatedreactor(LWGR)types,while2%weregascooledreactortypes.Threereactorswereliquidmetalcooledfastreactors.Theremaining0.5%werethreeliquidmetalcooledfastreactorswithatotalcapacityof1.4GW(e).
During2020,5.2GW(e)ofnuclearcapacitywasretired,withsixnuclearpowerreactorspermanentlyshutdown:Fessenheim-1(an880MW(e)PWR)andFessenheim-2(an880MW(e)PWR)inFrance,Leningrad-2(a925MW(e)LWGR)intheRussianFederation,andDuaneArnold-1(a601MW(e)boilingwaterreactor(BWR))andIndianPoint-2(a998MW(e)PWR)intheUnitedStatesofAmerica.Ringhals-1(an881MW(e)BWR)inSwedenwasshutdownonthelastdayof2020,aftermorethan46yearsofservice.
Overall,nuclearpowercapacityinthepastdecadehasshownagradualgrowthtrend,includingsome23.7GW(e)ofnewcapacityaddedbynewreactorsorupgradestoexistingreactors.Nuclearpowergenerationhasdemonstratedcontinuousgrowth,expandingbymorethan6%since2011.
Outofthe52reactorscurrentlyunderconstruction,9areinembarkingcountries.Atotalof28countrieshaveexpressedinterestinnuclearpowerandareconsidering,planningoractivelyworkingtoincludeitintotheirenergymix.Another24MemberStatesparticipateintheAgency’snuclearinfrastructurerelatedactivitiesorareinvolvedinenergyplanningprojectsthroughthetechnicalcooperationprogramme.TentotwelveembarkingMemberStatesplantooperateNPPsby2030-2035,representingapotentialincreaseofnearly30%inthenumberofoperatingcountries.SeveralembarkingcountrieshavealsoexpressedinterestinSMRstechnology,inparticularEstonia,Ghana,Jordan,Kenya,Poland,SaudiArabiaandSudan,aswellasexpandingcountriessuchasSouthAfrica.BasedonitsMilestonesApproach,theIAEAofferstheIntegratedNuclearInfrastructureReview(INIR)servicetobothembarkingcountriesandthosethatareexpandingtheirnuclearpowerprogramme,tohelpensurethattheinfrastructurerequiredforthesafe,secureandsustainableuseofnuclearpowerisdevelopedandimplementedinaresponsibleandorderlymanner.
GOV/INF/2021/32-GC(65)/INF/6
Page6
TheIntegratedNuclearInfrastructureReview(INIR)continuestobeasought-afterserviceoftheAgency,supportingMemberStatesinreviewingthestatusoftheirnationalnuclearinfrastructureandidentifyinggapsinasystematicandintegratedway.Todate,32INIRmissionshavebeenconductedto
MemberStates.
GOV/INF/2021/32-GC(65)/INF/6
Page7
C.TheProspectsforNuclearPower
Scenariomodellingconsistentwiththeobjectivesofthe2015ParisAgreementgenerallyindicatesthatnuclearpoweriskeytothesuccessofthedecarbonizationoftheelectricitysector,byprovidingreliablelowcarbonpowertothegridaroundtheclock.Withtheglobalincreaseinelectricitydemandtosatisfytheneedsoftheworld’spopulationandensuretheiraccesstoelectricityby2050,andtheincreasedlevelofelectrificationoftheeconomy,amajorincreaseinlowcarbongenerationwillbenecessary.Whilethebulkofthisgenerationistobeprovidedbyvariablerenewables,suchaswindandsolarPV,nuclearwillmaintainitsglobalshareofbetween8and10%,andprovidethenecessaryflexibilityanddispatchabilitythatlowcarbonelectricitysystemsrequire.TheAgency’shighcaseprojectionsupto2050seenuclearinstalledcapacityincreasingto715GW(e),relyingonextensivelong-termoperationoftheexistingfleetaswellas500GW(e)fromnewbuildstobeconstructedoverthreedecades.Inthelowcaseestimate,globalnuclearelectricitygeneratingcapacitywilldecreaseby7%to363GW(e)by2050,representinga6%shareofglobalelectricitygenerationversusaround10%in2019.However,eventhelowcaseestimateanticipatesasignificantconstructionofnewNPPs,assumingthataboutonethirdofexistingnuclearpowerreactorswillberetiredby2030,whilenewreactorswilladdalmost80GW(e)ofcapacity.Between2030and2050itisexpectedthatcapacityadditionsofnewreactorswillalmostmatchretirements.
TorecoverfromtheimpactoftheCOVID-19pandemic,governmentsaroundtheworldareconsideringeconomicrecoverypackages.Thesemeasuresareauniqueopportunitytoalignpublicinvestmentswiththeneedsofthecleanenergytransition.Hence,attentionisbeingpaidtotheeffectsofinvestmentsingreentechnologies.InMarch2021,theIMFpublishedaworkingpapershowingthatinvestmentsingreentechnologieshaveagreaterimpactonnationalGDPthaninvestmentsinfossil-relatedassets.Moreover,investmentsinnuclearprogrammeshaveagreaterimpact(higherGDPmultiplier)thananyothergreentechnologyinvestments.MacroeconomicanalysisbytheAgencyhasalsoshownthatnuclearpowerprojectsleadtothecreationofahighnumberofwell-paidjobsandhaveotherpositiveimpactsontheeconomy.
GOV/INF/2021/32-GC(65)/INF/6
Page8
InfluentialFactorsfortheFutureDeploymentofNuclearPower
D.1.FundingandFinancing
ThecapitalcostsassociatedwithdevelopinganewNPParesubstantialandmayrepresentaboutthree-quartersofthelevelizedcostofnuclearelectricity.Theseinterest-relatedliabilitiesaredischargedthroughoutaplant’slifetime,offsetbytheincomegeneratedfromproducedelectricity.However,highlycapitalintensiveprojectsaresensitivetointerestratechangesandconstructiondurations,aswellastothenatureoftheseuncertainties.Avarietyofpotentialfinancingmodelshavebeendevelopedtoaddresssomeoftheseuncertainties,particularlythosemarketriskstowhichprojectdevelopers—andprovidersoffinance–maybeexposedduringtheoperatingphaseofaplant’slifecycle.Mitigationofsuchrisksmaybeachievedthrougharrangements–potentiallybackedbythegovernmentofthecountryhostingtheplant–tobuysomeorallofthepowerproducedbyaplantataguaranteedprice.SucharrangementshavebeencentraltodevelopingprojectssuchasOlkiluotoandHanhikiviNPPsinFinland,AkkuyuNPPinTurkey,andHinkleyPointCintheUnitedKingdom.
MitigationofrisksatearlierstagesoftheNPPlifecycle–thoserelatedtoconstructiondelaysandassociatedcostoverruns–maybeaccomplishedinanumberofways,forexamplebythehostgovernmentprovidingdirectsovereignguaranteestolenders,orbynuclearsteamsupplysystemvendorsagreeingtotakeanequitystakeintheproject.ThelatterhappenedintheBarakahNPPprojectintheUnitedArabEmirates,wheretheKoreaElectricPowerCorporationtookan18%equitystakeintheNawahEnergyandBarakahOneCompany;intheHanhikiviNPPprojectinFinland,wheretheRussianFederation’sStateAtomicEnergyCorporation“Rosatom”acquireda34%share;andintheHinkley
GOV/INF/2021/32-GC(65)/INF/6
Page9
PointCprojectintheUnitedKingdomwhereFrenchélectricitédeFranceS.A.andChinaGeneralNuclearPowerGrouphavetwo-thirdandone-thirdequity,respectively.ForrecentnewbuildprojectsinembarkingandexpandingcountriessuchasBangladesh,Belarus,Egypt,Hungary,IranandPakistanthevendorcountryandthehostgovernmentchosetoenterintointer-governmentalagreementswithgovernmentalloans.
SMRsmayhaveadvantagesoverlargereactors,suchasshorterconstructiontimes,lowerupfrontcapitalcosts,applicabilitytosmallergridsandmodularexpansionpossibilitiestograduallymeetthedemand.SuchadvantagescouldleadtorevisitingthecurrentfinancialmodelsusedforlargeNPPs.ThesuccessfuldemonstrationofSMRsinthenextdecadeorsocouldencouragemoreexpandingandembarkingcountriestoconsiderthem.PrivateinvestorsareshowinggrowinginterestinSMRtechnologydevelopment,demonstrationanddeployment.
Anotherimportantliabilityconcernsthecostsarisingattheendoftheoperatinglifetimeofafacility,suchasthoserelatedtofacilitydecommissioningandthelong-termmanagementofhighlevelradioactivewaste.Asinthecaseof‘up-front’costs,provisionsmustalsobemadefromoperatingincometoaddressthese‘backend’costs.Thelattermayrepresentupto10%ofthelevelizedcostofnuclearelectricity.Legislationgoverningtheuseofnuclearenergygenerallylaysoutrequirementsforsettingasidefundstocoverback-endcostsduringtherevenueearningphaseofaplant’soperatinglife.Manydifferentapproachesaretaken,fromthoserequiringownerstomakeappropriateprovisionsinthecompany’sbooks,toarequirementthattherelevantfundsbetransferredtoanindependentorganizationthatisresponsiblefortheirmanagementandtheireventualdisbursementtocoverthebackendliabilities
D.2.ElectricityMarketsandPolicies
Keydevelopmentsintheglobalpowermarketssince2017includethecontinuousdeploymentoflargeamountsofrenewableenergywithdecreasingcosts(forwindandsolarPV),theshiftingofelectricitydemandfromOECDtonon-OECDcountriesowingtoincreasedelectrificationofvarioussectors,thesignificantincreaseincarbonpricingasaresultofpolicies,andchangesinemissionstradingschemes.Togetherwiththedevelopmentof‘taxonomies’or,moregenerally,environmentalsocialandgovernance(ESG)criteriaforsustainableinvestments,andincreasedcommitmentfrommanyMemberStatestomeetnetzeroemissionsbythemiddleofthecentury,coalassetshavebecomealiability,andfinancialinstitutionsaremovingawayfrominvestmentsincoal.Nuclearpowergenerationhascontinuedtogrow,reachingin2019itssecondhighestlevelever.In2020,COVID-19-relatedlockdownsshookpowermarkets;overseveralmonthsdemandfellsignificantlyandfossilfuelgenerationfellevenfurtherinfavouroflow-marginalcosttechnologiessuchasrenewablesandnuclear.Emissionshavesincereboundedwiththeeconomicrecovery.Inadditiontofocusingonreducingcarbonemissions,policymakershavetoaddresstheneedforsecurityofsupply,airqualityandresilience.
TheParisAgreementshouldhaveapositiveinfluenceonnuclearpowerdevelopmentifnuclearpower’spotentialasalowcarbonenergysourcebecomesmorewidelyrecognized.TheIPCCSpecialReportonGlobalWarmingof1.5oC,releasedin2018,andtheIEA’srecentlylaunchedNetZeroBy2050:ARoadmapfortheGlobalEnergySectorshowthatmosttrajectoriestonetzeroincludenuclearpower,withadoublingofnuclearelectricitygenerationinthenextthreedecades.Asyet,therecentlyupdatednationallydeterminedcontributionsundertheParisAgreementdonotseemtoindicateashiftinthecallfornuclearpowertocontributetonationalclimatemitigationstrategies.However,insomecountries,theclimatechangeissueisanincentivetosupportcontinuedoperationofNPPsorpartoftherationaleforhavinganewbuildprogramme.Oneclearpotentialofnuclearpowerliesinitsabilitytohelpdecarbonize‘hard-to-abate’sectors–whichcannotbeelectrifiedeasily.Lowcarbonheatorhydrogenproducedbycurrentfleetandadvancedreactorscouldbecomekeytothesuccessofcountries’netzeroobjectives,providedthatthetechnologybecomescommerciallyviablewithinthenextdecadeorso.Inthemeantime,increasingtheroleofnuclearinproducinglowcarbonelectricityandtosome
GOV/INF/2021/32-GC(65)/INF/6
Page10
extendheatthroughthelong-termoperationoftheexistingfleetandnewnuclearplantsremainscriticallyimportant.
TheAgency’sprojectionsto2050suggestthatachievingtheParisAgreementobjectiveswillrequireatleastadoublingofcurrentnuclearpowercapacitylevelsby2050,inlinewithIEAprojections.Energypoliciesandelectricitymarketincentivesthatpromotealltypesoflowcarbonsolutions,includingnuclearpower,willplayafundamentalroleinincentivisinginvestmentinnuclearpowerandwillreducerisksandthecostoffinancing.Thisisnecessarytoensurethetimelydeploymentofnuclearpowerforclimatechangemitigation.Inparallel,itisnecessarytorecognizetheadvantagesofsecurityofsupply,reliabilityandpredictabilitythatnuclearpoweroffers,aswellasitscontributiontotheclimateresilienceofenergyinfrastructures.ThisisallthemoreurgentinanelectricityenvironmentthatreliesonincreasingamountsofvariablerenewabletechnologiessuchaswindandsolarPV.Recentpolicyexamplesservetoemphasizetheroleofelectricitymarketsinnuclearpowerdevelopment:intheUnitedKingdom,theContractforDifferenceortheRegulatedAssetBasemechanismsconsideredfornewnuclearprojectstosecurereturnsoninvestment;orthedifferenttypesofsupportenactedinseveralstatesintheUnitedStatesofAmerica(NewYork,Illinois,Connecticut,NewJerseyandOhio)tovaluelowcarbonnuclearelectricitygenerationandsupportexistingNPPs.
D.3.Resilience
InFebruary2021,theNorthAmericanwinterstormwithblackoutscausedbyacombinationoff
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 風(fēng)險管理與評估試題及答案
- 《世界古代建筑欣賞:大二藝術(shù)史教學(xué)教案》
- 《太陽系八大行星的特點:四年級地理教學(xué)教案》
- 新員工入職流程及操作系統(tǒng)使用指南
- 產(chǎn)品分銷與代理業(yè)務(wù)合作協(xié)議內(nèi)容
- 《走進物理世界:高一物理實驗課程教案》
- 鄉(xiāng)村旅游農(nóng)業(yè)開發(fā)方案
- 年度市場活動策劃與執(zhí)行報告
- 公司采購協(xié)議附件書
- 采購居間合同例文
- SG-CIM模型建設(shè)及實踐
- 【零售超市促銷策略研究的文獻綜述及理論基礎(chǔ)4500字】
- 人教版二年級下冊數(shù)學(xué)《圖形的運動(解決問題)》說課稿
- 2024年中華人民共和國企業(yè)所得稅年度納稅申報表(帶公式)20240301更新
- 2024年江蘇省揚州市中考數(shù)學(xué)真題(解析版)
- 中醫(yī)養(yǎng)生保健知識講座完整版
- 托福聽力課件
- 泰康集團線上測評真題
- 騰訊社招測評題庫
- 運動損傷的預(yù)防與處理預(yù)防和處理舞蹈運動損傷
- 物流無人機項目企業(yè)運營實施方案
評論
0/150
提交評論