版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣西示范初中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在等比數(shù)列中,若是函數(shù)的極值點(diǎn),則的值是()A. B.C. D.2.過拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),點(diǎn)是原點(diǎn),若;則的面積為()A. B.C. D.3.若數(shù)列滿足,則數(shù)列的通項(xiàng)公式為()A. B.C. D.4.為了調(diào)查修水縣2019年高考數(shù)學(xué)成績(jī),在高考后對(duì)我縣6000名考生進(jìn)行了抽樣調(diào)查,其中2000名文科考生,3800名理科考生,200名藝術(shù)和體育類考生,從中抽到了120名考生的數(shù)學(xué)成績(jī)作為一個(gè)樣本,這項(xiàng)調(diào)查宜采用的抽樣方法是()A.系統(tǒng)抽樣法 B.分層抽樣法C.抽簽法 D.簡(jiǎn)單的隨機(jī)抽樣法5.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則6.已知數(shù)列的前n項(xiàng)和為,且對(duì)任意正整數(shù)n都有,若,則()A.2019 B.2020C.2021 D.20227.雙曲線C:的右焦點(diǎn)為F,過點(diǎn)F作雙曲線C的兩條漸近線的垂線,垂足分別為H1,H2.若,則雙曲線C的離心率為()A. B.C. D.28.已知拋物線上一點(diǎn)M與焦點(diǎn)間的距離是3,則點(diǎn)M的縱坐標(biāo)為()A.1 B.2C.3 D.49.在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,,過且垂直于軸的直線與交于,兩點(diǎn),與軸交于點(diǎn),,則的離心率為()A. B.C. D.10.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.11.如圖,在空間四邊形OABC中,,,,點(diǎn)N為BC的中點(diǎn),點(diǎn)M在線段OA上,且OM=2MA,則()A. B.C. D.12.已知正實(shí)數(shù)a,b滿足,若不等式對(duì)任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)m的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,某湖有一半徑為的半圓形岸邊,現(xiàn)決定在圓心O處設(shè)立一個(gè)水文監(jiān)測(cè)中心(大小忽略不計(jì)),在其正東方向相距的點(diǎn)A處安裝一套監(jiān)測(cè)設(shè)備.為了監(jiān)測(cè)數(shù)據(jù)更加準(zhǔn)確,在半圓弧上的點(diǎn)B以及湖中的點(diǎn)C處,再分別安裝一套監(jiān)測(cè)設(shè)備,且,.定義:四邊形及其內(nèi)部區(qū)域?yàn)椤爸苯颖O(jiān)測(cè)覆蓋區(qū)域”,設(shè).則“直接監(jiān)測(cè)覆蓋區(qū)域”面積的最大值為________14.美好人生路車站早上有6:40,6:50兩班開往A校的公交車,若李華同學(xué)在早上6:35至6:50之間隨機(jī)到達(dá)該車站,乘開往A校的公交車,公交車準(zhǔn)時(shí)發(fā)車,則他等車時(shí)間不超過5分鐘的概率為______15.如圖,正方體中,點(diǎn)E,F(xiàn),G分別是,AB,的中點(diǎn),則直線與GF所成角的大小是______(用反三角函數(shù)表示)16.《周髀算經(jīng)》是中國(guó)最古老的天文學(xué)和數(shù)學(xué)著作,書中提到:從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣的日影子長(zhǎng)依次成等差數(shù)列,若冬至、立春、春分的日影子長(zhǎng)的和是37.5尺,芒種的日影子長(zhǎng)為4.5尺,則立夏的日影子長(zhǎng)為___________尺.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,離心率為,短半軸長(zhǎng)為1(1)求橢圓C的方程;(2)已知直線,問:在橢圓C上是否存在點(diǎn)T,使得點(diǎn)T到直線l的距離最大?若存在,請(qǐng)求出這個(gè)最大距離;若不存在,請(qǐng)說明理由18.(12分)某市對(duì)排污水進(jìn)行綜合治理,征收污水處理費(fèi),系統(tǒng)對(duì)各廠一個(gè)月內(nèi)排出的污水量x噸收取的污水處理費(fèi)y元,運(yùn)行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請(qǐng)寫出y與x的函數(shù)關(guān)系式;(2)求排放污水150噸的污水處理費(fèi)用.19.(12分)已知函數(shù).(1)記函數(shù),當(dāng)時(shí),討論函數(shù)的單調(diào)性;(2)設(shè),若存在兩個(gè)不同的零點(diǎn),證明:為自然對(duì)數(shù)的底數(shù)).20.(12分)已知圓與軸相切,圓心在直線上,且到直線的距離為(1)求圓的方程;(2)若圓的圓心在第一象限,過點(diǎn)的直線與相交于、兩點(diǎn),且,求直線的方程21.(12分)在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,求平面ACD1的一個(gè)法向量.22.(10分)已知數(shù)列的首項(xiàng),其前n項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為,且,求n.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)導(dǎo)數(shù)的性質(zhì)求出函數(shù)的極值點(diǎn),再根據(jù)等比數(shù)列的性質(zhì)進(jìn)行求解即可.【詳解】,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,所以是函數(shù)的極值點(diǎn),因?yàn)?,且所以,故選:B2、C【解析】拋物線焦點(diǎn)為,準(zhǔn)線方程為,由得或所以,故答案為C考點(diǎn):1、拋物線的定義;2、直線與拋物線的位置關(guān)系3、D【解析】由,分兩步,當(dāng)求出,當(dāng)時(shí)得到,兩式作差即可求出數(shù)列的通項(xiàng)公式;【詳解】解:因?yàn)棰?,?dāng)時(shí),,當(dāng)時(shí)②,①②得,所以,當(dāng)時(shí)也成立,所以;故選:D4、B【解析】考生分為幾個(gè)不同的類型或?qū)哟?,由此可以確定抽樣方法;【詳解】6000名考生進(jìn)行抽樣調(diào)查,其中2000名文科考生,3800名理科考生,200名藝術(shù)和體育類考生,從中抽到了120名考生的數(shù)學(xué)成績(jī)作為一個(gè)樣本又文科考生、理科考生、藝術(shù)和體育類考生會(huì)存在差異,采用分層抽樣法較好故選:B.【點(diǎn)睛】本題主要考查的是分層抽樣,掌握分層抽樣的有關(guān)知識(shí)是解題的關(guān)鍵,屬于基礎(chǔ)題.5、D【解析】通過舉反列即可得ABC錯(cuò)誤,利用不等式性質(zhì)可判斷D【詳解】A.當(dāng)時(shí),,但,故A錯(cuò);B.當(dāng)時(shí),,故B錯(cuò);C.當(dāng)時(shí),,但,故C錯(cuò);D.若,則,D正確故選:D6、C【解析】先令代入中,求得,再根據(jù)遞推式得到,將與已知相減,可判斷數(shù)列是等比數(shù)列,進(jìn)而確定,求得答案.【詳解】因?yàn)?,令,則,又,故,即,故數(shù)列是等比數(shù)列,則,所以,所以,故選:C.7、D【解析】將條件轉(zhuǎn)化為該雙曲線的一條漸近線的傾斜角為,可得,由離心率公式即可得解.【詳解】由題意,(為坐標(biāo)原點(diǎn)),所以該雙曲線的一條漸近線的傾斜角為,所以,即,所以離心率.故選:D.8、B【解析】利用拋物線的定義求解即可【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線方程為,因?yàn)閽佄锞€上一點(diǎn)M與焦點(diǎn)間的距離是3,所以,得,即點(diǎn)M的縱坐標(biāo)為2,故選:B9、B【解析】由題意結(jié)合幾何性質(zhì)可得為等腰三角形,且,所以,求出的長(zhǎng),結(jié)合橢圓的定義可得答案.【詳解】如圖,由題意軸,軸,則又為的中點(diǎn),則為的中點(diǎn),又,則為等腰三角形,且,所以將代入橢圓方程得,,即所以,則由橢圓的定義可得,即則橢圓的離心率故選:B10、D【解析】根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號(hào)和極值點(diǎn),據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個(gè)不同的零點(diǎn),且在這兩個(gè)零點(diǎn)的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點(diǎn)睛】本題考查導(dǎo)函數(shù)圖象的識(shí)別,此類問題應(yīng)根據(jù)原函數(shù)的單調(diào)性來考慮導(dǎo)函數(shù)的符號(hào)與零點(diǎn)情況,本題屬于基礎(chǔ)題.11、D【解析】利用空間向量的線性運(yùn)算即可求解.【詳解】解:∵N為BC的中點(diǎn),點(diǎn)M在線段OA上,且OM=2MA,且,,,故選:D.12、D【解析】利用基本不等式求出的最小值16,分離參數(shù)即可.【詳解】因?yàn)椋?,,所以,?dāng)且僅當(dāng),即,時(shí)取等號(hào)由題意,得,即對(duì)任意的實(shí)數(shù)x恒成立,又,所以,即故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,根據(jù)余弦定理得的值,則四邊形的面積表示為,再代入面積公式化簡(jiǎn)為三角函數(shù),根據(jù)三角函數(shù)的性質(zhì)求解最大值即可.【詳解】在中,,,,,,則(其中),當(dāng)時(shí),取最大值,所以“直接監(jiān)測(cè)覆蓋區(qū)域”面積的最大值.故答案為:.【點(diǎn)睛】解答本題的關(guān)鍵是將四邊形的面積表示為,代入面積公式后化簡(jiǎn)得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì)求解最大值.14、【解析】根據(jù)題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達(dá),進(jìn)而根據(jù)幾何概型求概率的方法求得答案.【詳解】由題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達(dá),則所求概率.故答案為:.15、【解析】連接,由得出直線與GF所成角,再由余弦定理得出直線與GF所成角的大小.【詳解】連接,因?yàn)椋灾本€與GF所成角為.設(shè),則,,,又異面直線的夾角范圍為,所以直線與GF所成角的大小是.故答案為:16、【解析】利用等差數(shù)列的通項(xiàng)公式求出首項(xiàng)和公差,然后求出其中某一項(xiàng).【詳解】解:由題意得從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣的日影子長(zhǎng)依次成等差數(shù)列,設(shè)其公差為,解得故立夏的日影子長(zhǎng)為尺.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,最大距離為.,理由見解析【解析】(1)根據(jù)離心率及短軸長(zhǎng)求橢圓參數(shù),即可得橢圓方程.(2)根據(jù)直線與橢圓的位置關(guān)系,將問題轉(zhuǎn)為平行于直線且與橢圓相切的切線與直線最大距離,設(shè)直線方程聯(lián)立橢圓方程根據(jù)求參數(shù),進(jìn)而判斷點(diǎn)T的存在性,即可求最大距離.【小問1詳解】由題設(shè)知:且,又,∴,故橢圓C的方程為.小問2詳解】聯(lián)立直線與橢圓,可得:,∴,即直線與橢圓相離,∴只需求平行于直線且與橢圓相切的切線與直線最大距離即為所求,令平行于直線且與橢圓相切的直線為,聯(lián)立橢圓,整理可得:,∴,可得,當(dāng),切線為,其與直線距離為;當(dāng),切線為,其與直線距離為;綜上,時(shí),與橢圓切點(diǎn)與直線距離最大為.18、(1);(2)1400(元).【解析】(1)根據(jù)已知條件即可容易求得函數(shù)關(guān)系式;(2)根據(jù)(1)中所求函數(shù)關(guān)系式,令,求得函數(shù)值即可.【小問1詳解】根據(jù)題意,得:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.即.【小問2詳解】因?yàn)?,故,故該廠應(yīng)繳納污水處理費(fèi)1400元.19、(1)在和上單調(diào)遞增;在上單調(diào)遞減(2)證明見解析【解析】(1)先求導(dǎo),然后對(duì)導(dǎo)數(shù)化簡(jiǎn)整理后再解不等式即可得單調(diào)性;(2)要證明,通過求函數(shù)的極值可證明,要證,根據(jù)有兩個(gè)不同的零點(diǎn),將問題轉(zhuǎn)化為證明成立,再通過換元從求函數(shù)的最值上證明.【小問1詳解】因?yàn)?,所以,令,得?所以時(shí),或;時(shí),.所以在和上單調(diào)遞增;在上單調(diào)遞減.【小問2詳解】因?yàn)?,所?當(dāng)時(shí),,可得在上單調(diào)遞減,此時(shí)不可能存在兩個(gè)不同的零點(diǎn),不符合題意.當(dāng)時(shí),.令,得.當(dāng)時(shí),;當(dāng)時(shí),.所以在上單調(diào)遞增,在上單調(diào)遞減.而當(dāng)時(shí),,時(shí),.所以要使存在兩個(gè)不同的零點(diǎn),則,即,解得.因?yàn)榇嬖趦蓚€(gè)不同的零點(diǎn),則,即.不妨設(shè),則,則,要證,即證,即證,即,.即證,令,則,所以在上單調(diào)遞增,所以,即,所以成立.綜上有.【關(guān)鍵點(diǎn)點(diǎn)睛】解決本題的第(1)問的關(guān)鍵是對(duì)導(dǎo)函數(shù)的分子因式分解;解決第(2)問的關(guān)鍵一是分步證明,二是研究函數(shù)的單調(diào)性,三是轉(zhuǎn)化思想的運(yùn)用,四是換元思想的運(yùn)用.20、(1)或(2)或【解析】(1)設(shè)圓心的坐標(biāo)為,則該圓的半徑長(zhǎng)為,利用點(diǎn)到直線的距離公式可求得的值,即可得出圓的標(biāo)準(zhǔn)方程;(2)利用勾股定理可求得圓心到的距離,分析可知直線的斜率存在,設(shè)直線的方程為,利用點(diǎn)到直線的距離公式可求得關(guān)于的方程,解出的值,即可得出直線的方程.【小問1詳解】解:設(shè)圓心的坐標(biāo)為,則該圓的半徑長(zhǎng)為,因?yàn)閳A心到直線的距離為,解得,所以圓心的坐標(biāo)為或,半徑為,因此,圓的標(biāo)準(zhǔn)方程為或.【小問2詳解】解:若圓的圓心在第一象限,則圓的標(biāo)準(zhǔn)方程為.因?yàn)?,所以圓心到直線的距離.若直線的斜率不存在,則直線的方程為,此時(shí)圓心到直線的距離為,不合乎題意;所以,直線的斜率存在,可設(shè)直線的方程為,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 室內(nèi)涂料包工合同范例
- 2024年運(yùn)城申請(qǐng)客運(yùn)從業(yè)資格證版試題
- 2024年c1駕照幾2024年可以考客運(yùn)資格證
- 2024年黔東南道路運(yùn)輸客運(yùn)從業(yè)資格證模擬考試
- 2024年巢湖小型客運(yùn)從業(yè)資格證考試題答案
- 2024年河北客運(yùn)資格證考試題
- 2024年青??瓦\(yùn)證模擬考試題庫答案
- 2024年嘉峪關(guān)客運(yùn)從業(yè)資格證考試培訓(xùn)試題和答案
- 2024年阜新考客運(yùn)資格證試題題庫軟件
- 2024年遼寧客運(yùn)駕駛從業(yè)資格考試題庫及答案
- 汽車低壓電線束技術(shù)條件
- 水稻常見病蟲害ppt
- 學(xué)生會(huì)考核表(共3頁)
- 小蛋殼歷險(xiǎn)記.ppt
- 六年級(jí)家長(zhǎng)會(huì)家長(zhǎng)代表演講稿-PPT
- 學(xué)校校報(bào)??硎渍Z(創(chuàng)刊詞)
- 《電容的連接》ppt課件
- 采集運(yùn)維專業(yè)問答題(修訂)20140627
- 畢業(yè)生就業(yè)推薦表填寫說明-北京化工大學(xué)理學(xué)院.doc
- 一例重癥肺炎的個(gè)案護(hù)理.doc
- 玻璃幕墻計(jì)算書
評(píng)論
0/150
提交評(píng)論