2024屆河北衡中清大教育集團(tuán)高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第1頁
2024屆河北衡中清大教育集團(tuán)高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第2頁
2024屆河北衡中清大教育集團(tuán)高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第3頁
2024屆河北衡中清大教育集團(tuán)高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第4頁
2024屆河北衡中清大教育集團(tuán)高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆河北衡中清大教育集團(tuán)高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的最大值為()A.32 B.27C.16 D.402.已知,是雙曲線的左,右焦點(diǎn),經(jīng)過點(diǎn)且與x軸垂直的直線與雙曲線的一條漸近線相交于點(diǎn)A,且A在第三象限,四邊形為平行四邊形,為直線的傾斜角,若,則該雙曲線離心率的取值范圍是()A. B.C. D.3.已知三個(gè)觀測點(diǎn),在的正北方向,相距,在的正東方向,相距.在某次爆炸點(diǎn)定位測試中,兩個(gè)觀測點(diǎn)同時(shí)聽到爆炸聲,觀測點(diǎn)晚聽到,已知聲速為,則爆炸點(diǎn)與觀測點(diǎn)的距離是()A. B.C. D.4.已知直線與圓交于兩點(diǎn),過分別作的垂線與軸交于兩點(diǎn),則A.2 B.3C. D.45.已知函數(shù),當(dāng)時(shí),函數(shù)在,上均為增函數(shù),則的取值范圍是A. B.C. D.6.方程表示的曲線經(jīng)過的一點(diǎn)是()A. B.C. D.7.若數(shù)列為等比數(shù)列,且,,則()A.8 B.16C.32 D.648.如果橢圓上一點(diǎn)到焦點(diǎn)的距離等于6,則線段的中點(diǎn)到坐標(biāo)原點(diǎn)的距離等于()A.7 B.10C.12 D.149.有6本不同的書,按下列方式進(jìn)行分配,其中分配種數(shù)正確的是()A.分給甲、乙、丙三人,每人各2本,有15種分法;B.分給甲、乙、丙三人中,一人4本,另兩人各1本,有180種分法;C.分給甲乙每人各2本,分給丙丁每人各1本,共有90種分法;D.分給甲乙丙丁四人,有兩人各2本,另兩人各1本,有1080種分法;10.設(shè)雙曲線:(,)的右頂點(diǎn)為,右焦點(diǎn)為,為雙曲線在第二象限上的點(diǎn),直線交雙曲線于另一個(gè)點(diǎn)(為坐標(biāo)原點(diǎn)),若直線平分線段,則雙曲線的離心率為()A. B.C. D.11.加斯帕爾·蒙日(圖1)是18~19世紀(jì)法國著名的幾何學(xué)家,他在研究圓錐曲線時(shí)發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點(diǎn)都在同一個(gè)圓上,其圓心是橢圓的中心,這個(gè)圓被稱為“蒙日圓”(圖2).則橢圓的蒙日圓的半徑為()A.3 B.4C.5 D.612.若直線經(jīng)過,,兩點(diǎn),則直線的傾斜角的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正方體中,點(diǎn)是底面內(nèi)(含邊界)的一點(diǎn),且平面,則異面直線與所成角的取值范圍為____________14.過點(diǎn)作圓的切線l,直線與l平行,則直線l過定點(diǎn)_________,與l間的距離為____________15.已知橢圓的左、右焦點(diǎn)分別為,,P為橢圓上一點(diǎn),滿足(O為坐標(biāo)原點(diǎn)).若,則橢圓的離心率為______16.半徑為的球的體積為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知二次曲線的方程:(1)分別求出方程表示橢圓和雙曲線的條件;(2)若雙曲線與直線有公共點(diǎn)且實(shí)軸最長,求雙曲線方程;(3)為正整數(shù),且,是否存在兩條曲線,其交點(diǎn)P與點(diǎn)滿足,若存在,求的值;若不存在,說明理由18.(12分)命題p:直線l:與圓C:有公共點(diǎn),命題q:雙曲線的離心率(1)若p,q均為真命題,求實(shí)數(shù)m的取值范圍;(2)若為真,為假,求實(shí)數(shù)m的取值范圍19.(12分)已知橢圓:的一個(gè)頂點(diǎn)為,離心率為,直線與橢圓交于不同的兩點(diǎn)M,N(1)求橢圓的標(biāo)準(zhǔn)方程;(2)當(dāng)?shù)拿娣e為時(shí),求的值20.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點(diǎn),M是棱PC的中點(diǎn),,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值21.(12分)已知等差數(shù)列滿足(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和22.(10分)已知拋物線焦點(diǎn)是,斜率為的直線l經(jīng)過F且與拋物線相交于A、B兩點(diǎn)(1)求該拋物線的標(biāo)準(zhǔn)方程和準(zhǔn)線方程;(2)求線段AB的長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用導(dǎo)數(shù)即可求解.【詳解】因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),.所以函數(shù)在上單調(diào)遞增;在上單調(diào)遞增,,因此,的最大值為.故選:A2、B【解析】根據(jù)雙曲線的幾何性質(zhì)和平行四邊形的性質(zhì)可知也在雙曲線的漸近線上,且在第一象限,從而由可知軸,所以在直角三角形中,,由,可得的范圍,進(jìn)而轉(zhuǎn)化為,的不等式,結(jié)合可得離心率的取值范圍【詳解】解:因?yàn)榻?jīng)過點(diǎn)且與軸垂直的直線與雙曲線的一條漸近線相交于點(diǎn),且在第三象限,四邊形為平行四邊形,所以由雙曲線的對稱性可知也在雙曲線的漸近線上,且在第一象限,由軸,可知軸,所以,在直角三角形中,,因?yàn)?,所以,,即,所以,即,即,故,所?故選:B3、D【解析】根據(jù)題意作出示意圖,然后結(jié)合余弦定理解三角形即可求出結(jié)果.【詳解】設(shè)爆炸點(diǎn)為,由于兩個(gè)觀測點(diǎn)同時(shí)聽到爆炸聲,則點(diǎn)位于的垂直平分線上,又在的正東方向且觀測點(diǎn)晚聽到,則點(diǎn)位于的左側(cè),,,,設(shè),則,解得,則爆炸點(diǎn)與觀測點(diǎn)的距離為,故選:D.4、D【解析】由題意,圓心到直線的距離,∴,∵直線∴直線的傾斜角為,∵過分別作的垂線與軸交于兩點(diǎn),∴,故選D.5、A【解析】由,函數(shù)在上均為增函數(shù),恒成立,,設(shè),則,又設(shè),則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點(diǎn)取最大值為,在點(diǎn)取最小值.則的取值范圍是,故答案選A考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),簡單的線性規(guī)劃6、C【解析】當(dāng)時(shí)可得,可得答案.【詳解】當(dāng)時(shí)可得所以方程表示的曲線經(jīng)過的一點(diǎn)是,且其它點(diǎn)都不滿足方程,故選:C7、B【解析】設(shè)等比數(shù)列的公比為,根據(jù)等比數(shù)列的通項(xiàng)公式得到,即可求出,再根據(jù)計(jì)算可得;【詳解】解:設(shè)等比數(shù)列公比為,因?yàn)?、,所以,所以;故選:B8、A【解析】可由橢圓方程先求出,在利用橢圓的定義求出,利用已知求解出,再取的中點(diǎn),連接,利用中位線,即可求解出線段的中點(diǎn)到坐標(biāo)原點(diǎn)的距離.【詳解】因?yàn)闄E圓,,所以,結(jié)合得,,取的中點(diǎn),連接,所以為的中位線,所以.故選:A.9、D【解析】根據(jù)題意,分別按照選項(xiàng)說法列式計(jì)算驗(yàn)證即可做出判斷.【詳解】選項(xiàng)A,6本不同的書分給甲、乙、丙三人,每人各2本,有種分配方法,故該選項(xiàng)錯(cuò)誤;選項(xiàng)B,6本不同的書分給甲、乙、丙三人,一人4本,另兩人各1本,先將6本書分成4-1-1的3組,再將三組分給甲乙丙三人,有種分配方法,故該選項(xiàng)錯(cuò)誤;選項(xiàng)C,6本不同的書分給甲乙每人各2本,有種方法,其余分給丙丁每人各1本,有種方法,所以不同的分配方法有種,故該選項(xiàng)錯(cuò)誤;選項(xiàng)D,先將6本書分為2-2-1-14組,再將4組分給甲乙丙丁4人,有種方法,故該選項(xiàng)正確.故選:D.10、A【解析】由給定條件寫出點(diǎn)A,F(xiàn)坐標(biāo),設(shè)出點(diǎn)B的坐標(biāo),求出線段FC的中點(diǎn)坐標(biāo),由三點(diǎn)共線列式計(jì)算即得.【詳解】令雙曲線的半焦距為c,點(diǎn),設(shè),由雙曲線對稱性得,線段FC的中點(diǎn),因直線平分線段,即點(diǎn)D,A,B共線,于是有,即,即,離心率.故選:A11、A【解析】由蒙日圓的定義,確定出圓上的一點(diǎn)即可求出圓的半徑.【詳解】由蒙日圓的定義,可知橢圓的兩條切線的交點(diǎn)在圓上,所以,故選:A12、D【解析】應(yīng)用兩點(diǎn)式求直線斜率得,結(jié)合及,即可求的范圍.【詳解】根據(jù)題意,直線經(jīng)過,,,∴直線的斜率,又,∴,即,又,∴;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過作平面平面,得到在與平面的交線上,連接,證得平面平面,得到點(diǎn)在上,設(shè)正方體的棱長為,且,得到,,設(shè)與所成角為,利用向量的夾角公式,求得,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】過作平面平面,因?yàn)辄c(diǎn)是底面內(nèi)(含邊界)的一點(diǎn),且平面,則平面,即在與平面的交線上,連接,因?yàn)榍?,所以四邊形是平行四邊形,所以,平面,同理可證平面,所以平面平面,則平面即為,點(diǎn)在線段上,設(shè)正方體的棱長為,且,則,,可得,設(shè)與所成角為,則,當(dāng)時(shí),取得最小值,最小值為,當(dāng)或時(shí),取得最大值,最大值為故答案為14、①.②.##2.4【解析】利用直線與平行,結(jié)合切線的性質(zhì)求出切線的方程,即可確定定點(diǎn)坐標(biāo),再利用兩條平行線間的距離公式求兩線距離.【詳解】由題意,直線斜率,設(shè)直線的方程為,即∴直線l過定點(diǎn),由與圓相切,得,解得,∴的方程為,的方程為,則兩直線間的距離為故答案為:;.15、##【解析】由可得,再結(jié)合橢圓的性質(zhì)可得為直角三角形,由題意設(shè),則,由勾股定理可得,再結(jié)合橢圓的定義可求出離心率【詳解】因?yàn)?,所以,所以,因?yàn)椋?,所以為直角三角形,即,所以設(shè),則,所以,得,因?yàn)閯t,所以,所以,即離心率為,故答案為:16、【解析】根據(jù)球的體積公式求解【詳解】根據(jù)球的體積公式【點(diǎn)睛】球的體積公式三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)時(shí),方程表示橢圓,時(shí),方程表示雙曲線;(2);(3)存在,且或或.【解析】(1)當(dāng)且僅當(dāng)分母都為正,且不相等時(shí),方程表示橢圓;當(dāng)且僅當(dāng)分母異號時(shí),方程表示雙曲線(2)將直線與曲線聯(lián)立化簡得:,利用雙曲線與直線有公共點(diǎn),可確定的范圍,從而可求雙曲線的實(shí)軸,進(jìn)而可得雙曲線方程;(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì),任意兩橢圓之間無公共點(diǎn),任意兩雙曲線之間無公共點(diǎn),從而可求【詳解】(1)當(dāng)且僅當(dāng)時(shí),方程表示橢圓;當(dāng)且僅當(dāng)時(shí),方程表示雙曲線(2)化簡得:△或所以雙曲線的實(shí)軸為,當(dāng)時(shí),雙曲線實(shí)軸最長為此時(shí)雙曲線方程為(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì)任意兩橢圓之間無公共點(diǎn),任意兩雙曲線之間無公共點(diǎn)設(shè),,,2,,,6,7,由橢圓與雙曲線定義及;所以所以這樣的,存在,且或或【點(diǎn)睛】方法點(diǎn)睛:曲線方程的確定可分為兩類:若已知曲線類型,則采用待定系數(shù)法;若曲線類型未知時(shí),則可利用直接法、定義法、相關(guān)點(diǎn)法等求解或者利用分類討論思想求解.18、(1),;(2).【解析】(1)求出,成立的等價(jià)條件,即可求實(shí)數(shù)的取值范圍;(2)若“”為假命題,“”為真命題,則、一真一假,當(dāng)真假時(shí),求出的取值范圍,當(dāng)假真時(shí),求出的取值范圍,然后取并集即可得答案【小問1詳解】若命題為真命題,則,解得:,若命題為真命題,則且,,解得,∴,均為真命題,實(shí)數(shù)的取值范圍是,;【小問2詳解】若為真,為假,則、一真一假;①當(dāng)真假時(shí),即“”且“或”,則此時(shí)的取值范圍是;當(dāng)假真時(shí),即“或”且“”,則此時(shí)的取值范圍是;綜上,的取值范圍是19、(1)(2)【解析】(1)由橢圓的一個(gè)頂點(diǎn)為,得到,再由橢圓的離心率為,求得,進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程;(2)由橢圓的對稱性得到,聯(lián)立方程組求得,根據(jù)的面積為,列出方程,即可求解.【小問1詳解】解:由題意,橢圓的一個(gè)頂點(diǎn)為,可得,又由橢圓的離心率為,可得,所以,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:設(shè),且根據(jù)橢圓的對稱性得,聯(lián)立方程組,整理得,解得,因?yàn)榈拿娣e為,可得,解得.20、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形可得,再由面面垂直的性質(zhì)得出線面垂直,即可求證;(2)建立空間直角坐標(biāo)系,利用向量法求線面角.【小問1詳解】因?yàn)镼為AD的中點(diǎn),,所以,又因?yàn)槠矫娴酌鍭BCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小問2詳解】由題可知QA、QB、QP兩兩互相垂直,以QA為x軸、QB為y軸、QP為z軸建立空間坐標(biāo)系,如圖,根據(jù)題意,則,,,,,由M是棱PC的中點(diǎn)可知,,設(shè)平面MQB的法向量為,,,則,即令,則,,故平面MQB的一個(gè)法向量為,所以,所以直線PB與平面MQB所成角的正弦值為21、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為d,由題意得列出方程組,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比數(shù)列的定義,可證數(shù)列為等比數(shù)列,結(jié)合前n項(xiàng)和公式,即可得答案.【小問1詳解】設(shè)等差數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論