2024屆吉林省吉林市“三校”高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第1頁
2024屆吉林省吉林市“三校”高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第2頁
2024屆吉林省吉林市“三校”高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第3頁
2024屆吉林省吉林市“三校”高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第4頁
2024屆吉林省吉林市“三校”高二上數(shù)學(xué)期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆吉林省吉林市“三?!备叨蠑?shù)學(xué)期末經(jīng)典模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線離心率為2,過點(diǎn)的直線與雙曲線C交于A,B兩點(diǎn),且點(diǎn)P恰好是弦的中點(diǎn),則直線的方程為()A. B.C. D.2.已知、分別為雙曲線的左、右焦點(diǎn),且,點(diǎn)P為雙曲線右支一點(diǎn),為的內(nèi)心,若成立,給出下列結(jié)論:①點(diǎn)的橫坐標(biāo)為定值a;②離心率;③;④當(dāng)軸時(shí),上述結(jié)論正確的是()A.①② B.②③C.①②③ D.②③④3.已知點(diǎn)是雙曲線的左焦點(diǎn),是雙曲線右支上一動(dòng)點(diǎn),過點(diǎn)作軸垂線并延長(zhǎng)交雙曲線左支于點(diǎn),當(dāng)點(diǎn)向上移動(dòng)時(shí),的值()A.增大 B.減小C.不變 D.無法確定4.有3個(gè)興趣小組,甲、乙兩位同學(xué)各自參加其中一個(gè)小組,每位同學(xué)參加各個(gè)小組的可能性相同,則這兩位同學(xué)參加同一個(gè)興趣小組的概率為A. B.C. D.5.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.8 B.16C. D.6.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=17.已知正數(shù)x,y滿足,則取得最小值時(shí)()A. B.C.1 D.8.在數(shù)列中,,,則()A. B.C. D.9.拋物線的準(zhǔn)線方程為()A B.C. D.10.設(shè)為橢圓上一點(diǎn),,為左、右焦點(diǎn),且,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點(diǎn)構(gòu)不成三角形11.已知為等差數(shù)列,為公差,若成等比數(shù)列,且,則數(shù)列的前項(xiàng)和為()A. B.C. D.12.已知數(shù)列滿足,若.則的值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的左焦點(diǎn)為,M為橢圓上的一點(diǎn),N是的中點(diǎn),O為原點(diǎn),若,則______14.已知數(shù)列是公差不為0的等差數(shù)列,,且,,成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,求.15.如果方程表示焦點(diǎn)在軸上的橢圓,那么實(shí)數(shù)的取值范圍是______.16.已知函數(shù)的圖象上有一點(diǎn),則曲線在點(diǎn)處的切線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,圓.(1)試判斷圓C與圓M的位置關(guān)系,并說明理由;(2)若過點(diǎn)的直線l與圓C相切,求直線l的方程.18.(12分)在棱長(zhǎng)為的正方體中,、分別為線段、的中點(diǎn).(1)求平面與平面所成銳二面角的余弦值;(2)求直線到平面的距離.19.(12分)設(shè)數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)記,數(shù)列的前項(xiàng)和為,求不等式的解集.20.(12分)某公司舉辦捐步公益活動(dòng),參與者通過捐贈(zèng)每天運(yùn)動(dòng)步數(shù)獲得公司提供的牛奶,再將牛奶捐贈(zèng)給留守兒童.此活動(dòng)不但為公益事業(yè)作出了較大的貢獻(xiàn),還為公司獲得了相應(yīng)的廣告效益,據(jù)測(cè)算,首日參與活動(dòng)人數(shù)為5000人,以后每天人數(shù)比前一天都增加15%,30天后捐步人數(shù)穩(wěn)定在第30天的水平,假設(shè)此項(xiàng)活動(dòng)的啟動(dòng)資金為20萬元,每位捐步者每天可以使公司收益0.05元(以下人數(shù)精確到1人,收益精確到1元)(1)求活動(dòng)開始后第5天的捐步人數(shù),及前5天公司的捐步總收益;(2)活動(dòng)開始第幾天以后公司的捐步總收益可以收回啟動(dòng)資金并有盈余?21.(12分)設(shè)銳角三角形ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,.(1)求B的大?。?)若,,求b.22.(10分)已知數(shù)列的前項(xiàng)和,且(1)證明:數(shù)列為等差數(shù)列;(2)設(shè),記數(shù)列的前項(xiàng)和為,若,對(duì)任意恒成立,求實(shí)數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】運(yùn)用點(diǎn)差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設(shè),,則兩式相減得,即.又因?yàn)辄c(diǎn)P恰好是弦的中點(diǎn),所以,,所以直線的斜率為,所以直線的方程為,即.經(jīng)檢驗(yàn)滿足題意故選:C2、C【解析】利用雙曲線的定義、幾何性質(zhì)以及題意對(duì)選項(xiàng)逐個(gè)分析判斷即可【詳解】對(duì)于①,設(shè)內(nèi)切圓與的切點(diǎn)分別為,則由切線長(zhǎng)定理可得,因?yàn)?,,所以,所以點(diǎn)的坐標(biāo)為,所以點(diǎn)的橫坐標(biāo)為定值a,所以①正確,對(duì)于②,因?yàn)?,所以,化?jiǎn)得,即,解得,因?yàn)?,所以,所以②正確,對(duì)于③,設(shè)的內(nèi)切圓半徑為,由雙曲線的定義可得,,因?yàn)?,,所以,所以,所以③正確,對(duì)于④,當(dāng)軸時(shí),可得,此時(shí),所以,所以④錯(cuò)誤,故選:C3、C【解析】令雙曲線右焦點(diǎn)為,由對(duì)稱性可知,,結(jié)合雙曲線的定義即可得出結(jié)果.【詳解】令雙曲線右焦點(diǎn)為,由對(duì)稱性可知,,則,為常數(shù),故選:C.4、A【解析】每個(gè)同學(xué)參加的情形都有3種,故兩個(gè)同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A5、C【解析】畫出直觀圖,利用椎體體積公式進(jìn)行求解.【詳解】畫出直觀圖,為四棱錐A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE兩兩垂直,故體積為.故選:C6、A【解析】根據(jù)雙曲線定義求解【詳解】,則根據(jù)雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題7、B【解析】根據(jù)基本不等式進(jìn)行求解即可.【詳解】因?yàn)檎龜?shù)x,y,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),即時(shí),取等號(hào),而,所以解得,故選:B8、A【解析】根據(jù)已知條件,利用累加法得到的通項(xiàng)公式,從而得到.【詳解】由,得,所以,所以.故選:A.9、D【解析】根據(jù)拋物線方程求出,進(jìn)而可得焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程.【詳解】由可得,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為:,故選:D.10、D【解析】根據(jù)橢圓方程求出,然后結(jié)合橢圓定義和已知條件求出并求出,進(jìn)而判斷答案.【詳解】由題意可知,,由橢圓的定義可知,而,聯(lián)立方程解得,且,則6+2=8,即不構(gòu)成三角形.故選:D.11、C【解析】先利用已知條件得到,解出公差,得到通項(xiàng)公式,再代入數(shù)列,利用裂項(xiàng)相消法求和即可.【詳解】因?yàn)槌傻缺葦?shù)列,,故,即,故,解得或(舍去),故,即,故的前項(xiàng)和為:.故選:C.【點(diǎn)睛】方法點(diǎn)睛:數(shù)列求和的方法:(1)倒序相加法:如果一個(gè)數(shù)列的前項(xiàng)中首末兩端等距離的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么求這個(gè)數(shù)列的前項(xiàng)和即可以用倒序相加法(2)錯(cuò)位相減法:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的,那么這個(gè)數(shù)列的前項(xiàng)和即可以用錯(cuò)位相減法來求;(3)裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí),中間的一些像可相互抵消,從而求得其和;(4)分組轉(zhuǎn)化法:一個(gè)數(shù)列的通項(xiàng)公式是由若干個(gè)等差數(shù)列或等比數(shù)列:或可求和的數(shù)列組成,則求和時(shí)可用分組轉(zhuǎn)換法分別求和再相加減;(5)并項(xiàng)求和法:一個(gè)數(shù)列的前項(xiàng)和可以兩兩結(jié)合求解,則稱之為并項(xiàng)求和,形如類型,可采用兩項(xiàng)合并求解.12、D【解析】由,轉(zhuǎn)化為,再由求解.【詳解】因?yàn)閿?shù)列滿足,所以,即,因?yàn)?,所以,所以,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)三角形的中位線定理,結(jié)合橢圓的定義即可求得答案.【詳解】橢圓的左焦點(diǎn)為,如圖,設(shè)右焦點(diǎn)為,則,由N是的中點(diǎn),O為得中點(diǎn),,故,又,所以,故答案為:414、(1);(2).【解析】(1)根據(jù),且,,成等比數(shù)列,利用等比中項(xiàng)由,求得公差即可.(2)由(1)得到,再利用裂項(xiàng)相消法求解.【詳解】(1)設(shè)數(shù)列的公差為d,因?yàn)?,且,,成等比?shù)列,所以,即,解得或(舍去),所以數(shù)列的通項(xiàng)公式;(2)由(1)知:,所以.【點(diǎn)睛】方法點(diǎn)睛:求數(shù)列的前n項(xiàng)和的方法(1)公式法:①等差數(shù)列的前n項(xiàng)和公式,②等比數(shù)列的前n項(xiàng)和公式;(2)分組轉(zhuǎn)化法:把數(shù)列的每一項(xiàng)分成兩項(xiàng)或幾項(xiàng),使其轉(zhuǎn)化為幾個(gè)等差、等比數(shù)列,再求解(3)裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差求和,正負(fù)相消剩下首尾若干項(xiàng)(4)倒序相加法:把數(shù)列分別正著寫和倒著寫再相加,即等差數(shù)列求和公式的推導(dǎo)過程的推廣(5)錯(cuò)位相減法:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)之積構(gòu)成的,則這個(gè)數(shù)列的前n項(xiàng)和用錯(cuò)位相減法求解.(6)并項(xiàng)求和法:一個(gè)數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和.形如an=(-1)nf(n)類型,可采用兩項(xiàng)合并求解15、【解析】化簡(jiǎn)橢圓的方程為標(biāo)準(zhǔn)形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的橢圓,可得,解得,實(shí)數(shù)的取值范圍是.故答案為:.16、【解析】利用導(dǎo)數(shù)求得為增函數(shù),根據(jù),求得,進(jìn)而求得,得出即在點(diǎn)處的切線的斜率,再利用直線的點(diǎn)斜式方程,即可求解【詳解】由題意,點(diǎn)在曲線上,可得,又由函數(shù),則,所以函數(shù)在上為增函數(shù),且,所以,因?yàn)?,所以,即在點(diǎn)處的切線的斜率為2,所以曲線在點(diǎn)的切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求解曲線在某點(diǎn)處的切線方程,其中解答中熟記導(dǎo)數(shù)的幾何意義,以及導(dǎo)數(shù)的運(yùn)算公式,結(jié)合直線的點(diǎn)斜式方程是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)圓C與圓M相交,理由見解析(2)或【解析】(1)利用圓心距與半徑的關(guān)系即可判斷結(jié)果;(2)討論,當(dāng)直線l的斜率不存在時(shí)則方程為,當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,利用圓心到直線的距離等于半徑計(jì)算即可得出結(jié)果.【小問1詳解】把圓M的方程化成標(biāo)準(zhǔn)方程,得,圓心為,半徑.圓C的圓心為,半徑,因?yàn)?,所以圓C與圓M相交,【小問2詳解】①當(dāng)直線l的斜率不存在時(shí),直線l的方程為到圓心C距離為2,滿足題意;②當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,由題意得,解得,故直線l的方程為.綜上,直線l的方程為或.18、(1);(2).【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得平面與平面所成銳二面角的余弦值;(2)證明出平面,利用空間向量法可求得直線到平面的距離.【小問1詳解】解:以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個(gè)法向量為,,因此,平面與平面所成銳二面角的余弦值為.【小問2詳解】解:,則,所以,,因?yàn)槠矫?,所以,平面,,所以,直線到平面的距離為.19、(1)(2)【解析】(1)利用與的關(guān)系求解即可;(2)首先利用裂項(xiàng)求和得到,從而得到,再解不等式即可.【小問1詳解】令,則,當(dāng)時(shí),,當(dāng)時(shí),也符合上式,即數(shù)列的通項(xiàng)公式為.【小問2詳解】由(1)得,則,所以故可化為:,故,故不等式的解集為.20、(1)8745,1686元(2)37天【解析】(1)根據(jù)等比數(shù)列的性質(zhì)求出結(jié)果;(2)對(duì)活動(dòng)天數(shù)進(jìn)行討論,列出不等式求出的范圍即可.【小問1詳解】設(shè)第天的捐步人數(shù)為,則且,∴第5天的捐步人數(shù)為由題意可知前5天的捐步人數(shù)成等比數(shù)列,其中首項(xiàng)為5000,公比為1.15,∴前5天的捐步總收益為元.【小問2詳解】設(shè)活動(dòng)第天后公司捐步總收益可以回收并有盈余,若,則,解得(舍)若,則,解得∴活動(dòng)開始后第37天公司的捐步總收益可以收回啟動(dòng)資金并有盈余.21、(1);(2)【解析】(1)由正弦定理,可得,進(jìn)而可求出和角;(2)利用余弦定理,可得,即可求出.【詳解】(1)由,得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論