2024屆陜西省渭南區(qū)解放路中學數(shù)學高二上期末達標檢測試題含解析_第1頁
2024屆陜西省渭南區(qū)解放路中學數(shù)學高二上期末達標檢測試題含解析_第2頁
2024屆陜西省渭南區(qū)解放路中學數(shù)學高二上期末達標檢測試題含解析_第3頁
2024屆陜西省渭南區(qū)解放路中學數(shù)學高二上期末達標檢測試題含解析_第4頁
2024屆陜西省渭南區(qū)解放路中學數(shù)學高二上期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆陜西省渭南區(qū)解放路中學數(shù)學高二上期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,若,則()A.1 B.C. D.22.函數(shù)為的導函數(shù),令,則下列關系正確的是()A. B.C. D.3.已知等差數(shù)列{an}的前n項和為Sn,且S7=28,則a4=()A.4 B.7C.8 D.144.小王與小張二人參加某射擊比賽預賽的五次測試成績如下表所示,設小王與小張成績的樣本平均數(shù)分別為和,方差分別為和,則()第一次第二次第三次第四次第五次小王得分(環(huán))910579小張得分(環(huán))67557A. B.C. D.5.數(shù)列,則是這個數(shù)列的第()A.項 B.項C.項 D.項6.“冰雹猜想”數(shù)列滿足:,,若,則()A.4 B.3C.2 D.17.等差數(shù)列的公差為2,若成等比數(shù)列,則()A.72 B.90C.36 D.458.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶?;顒訕俗R(圖1),標識由黨徽、數(shù)字“100”“1921”“2021”和56根光芒線組成,生動展現(xiàn)中國共產(chǎn)黨團結帶領中國人民不忘初心、牢記使命、艱苦奮斗的百年光輝歷程.其中“100”的兩個“0”設計為兩個半徑為的相交大圓,分別內含一個半徑為1的同心小圓,且同心小圓均與另一個大圓外切(圖2).已知,在兩大圓的區(qū)域內隨機取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.9.已知直線平分圓C:,則最小值為()A.3 B.C. D.10.在中,角,,所對的邊分別為,,,若,,,則A. B.2C.3 D.11.給出如下四個命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④12.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線:()的焦點到準線的距離為4,過點的直線與拋物線交于,兩點,若,則______14.根據(jù)某市有關統(tǒng)計公報顯示,隨著“一帶一路”經(jīng)貿合作持續(xù)深化,該市對外貿易近幾年持續(xù)繁榮,2017年至2020年每年進口總額x(單位:千億元)和出口總額y(單位:千億元)之間的一組數(shù)據(jù)如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的進出口總額x,y滿足線性相關關系,則______;若計劃2022年出口總額達到5千億元,預計該年進口總額為______千億元15.年月我國成功發(fā)射了第一顆人造地球衛(wèi)星“東方紅一號”,這顆衛(wèi)星的運行軌道是以地心(地球的中心)為一個焦點的橢圓.已知衛(wèi)星的近地點(離地面最近的點)距地面的高度約為,遠地點(離地面最遠的點)距地面的高度約為,且地心、近地點、遠地點三點在同一直線上,地球半徑約為,則衛(wèi)星運行軌道是上任意兩點間的距離的最大值為___________16.已知數(shù)列前n項和為,且.(1)證明:是等比數(shù)列,并求的通項公式;(2)在①;②;③這三個條件中任選一個補充在下面橫線上,并加以解答.已知數(shù)列滿足___________,求的前n項和.注:如果選擇多個方案分別解答,按第一個方案解答計分.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得.(1)求家庭的月儲蓄y對月收入x的線性回歸方程;(2)判斷變量x與y之間是正相關還是負相關;(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.附:線性回歸方程中,,,其中,為樣本平均值.18.(12分)等比數(shù)列中,,(1)求的通項公式;(2)記為的前n項和.若,求m的值19.(12分)在公差為的等差數(shù)列中,已知,且成等比數(shù)列.(Ⅰ)求;(Ⅱ)若,求.20.(12分)已知橢圓C的兩焦點分別為,長軸長為6⑴求橢圓C的標準方程;⑵已知過點(0,2)且斜率為1的直線交橢圓C于A、B兩點,求線段AB的長度21.(12分)設函數(shù)(1)求函數(shù)的單調區(qū)間;(2)若有兩個零點,,求的取值范圍,并證明:22.(10分)已知點,點為直線上的動點,過作直線的垂線,線段的中垂線與交于點.(1)求點的軌跡的方程;(2)若過點直線與曲線交于,兩點,求與面積之和的最小值.(為坐標原點)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由向量平行,先求出的值,再由模長公式求解模長.【詳解】由,則,即則,所以則故選:B2、B【解析】求導后,令,可求得,再利用導數(shù)可得為減函數(shù),比較的大小后,根據(jù)為減函數(shù)可得答案.【詳解】由題意得,,,解得,所以所以,所以為減函數(shù)因為,所以,故選:B【點睛】關鍵點點睛:比較大小的關鍵是知道的單調性,利用導數(shù)可得的單調性.3、A【解析】由等差數(shù)列的性質可知,再代入等差數(shù)列的前項和公式求解.【詳解】數(shù)列{an}是等差數(shù)列,,那么,所以.故選:A.【點睛】本題考查等差數(shù)列的性質和前項和,屬于基礎題型.4、C【解析】根據(jù)圖表數(shù)據(jù)可以看出小王和小張的平均成績和成績波動情況.【詳解】解:從圖表中可以看出小王每次的成績均不低于小張,但是小王成績波動比較大,故設小王與小張成績的樣本平均數(shù)分別為和,方差分別為和.可知故選:C5、A【解析】根據(jù)數(shù)列的規(guī)律,求出通項公式,進而求出是這個數(shù)列的第幾項【詳解】數(shù)列為,故通項公式為,是這個數(shù)列的第項.故選:A.6、A【解析】根據(jù)題意分別假設為奇數(shù)、偶數(shù)的情況,求出對應的即可.【詳解】由題意知,因為,若為奇數(shù)時,,與為奇數(shù)矛盾,不符合題意;若為偶數(shù)時,,可得,符合題意.不符合故選:A7、B【解析】由題意結合成等比數(shù)列,有即可得,進而得到、,即可求.【詳解】由題意知:,,又成等比數(shù)列,∴,解之得,∴,則,∴,故選:B【點睛】思路點睛:由其中三項成等比數(shù)列,利用等比中項性質求項,進而得到等差數(shù)列的基本量1、由成等比,即;2、等差數(shù)列前n項和公式的應用.8、B【解析】求出兩圓相交公共部分兩個弓形面積,結合兩圓面積可得概率【詳解】如圖,是兩圓心,是兩圓交點坐標,四邊形邊長均為,又,所以,所以,四邊形是正方形,,弓形面積為,兩個弓形面積為,兩圓涉及部分面積為所以所求概率為故選:B9、D【解析】根據(jù)直線過圓心求得,再利用基本不等式求和的最小值即可.【詳解】根據(jù)題意,直線過點,即,則,當且僅當,即時取得最小值.故選:D.10、A【解析】利用正弦定理,可直接求出的值.【詳解】在中,由正弦定理得,所以,故選A.【點睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計算能力,屬于基礎題11、A【解析】對選項①,根據(jù)圓一般方程求解即可判斷①錯誤,對選項②,求出橢圓離心率即可判斷②錯誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯誤?!驹斀狻繉τ冖龠x項,,,故①錯誤;對于②選項,由題知,所以,所以離心率,故②錯誤;對于③選項,拋物線化為標準形式得拋物線,故準線方程是,故③正確;對于④選項,雙曲線化為標準形式得,所以,焦點在軸上,故漸近線方程是,故④錯誤.故選:A12、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設,設,求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設,由在長方體中,,,設,可得,在直角中,可得,在中,可得,所以,因為,所以.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】易得拋物線方程為,根據(jù),求得點P的坐標,進而得到直線l的方程,與拋物線方程聯(lián)立,再利用拋物線定義求解.【詳解】解:因為拋物線的焦點到準線的距離為4,所以,則拋物線:,設點的坐標為,的坐標為,因為,所以,則,則,所以直線的方程為,代入拋物線方程可得,故,則,所以故答案為:1514、①.1.6;②.3.65.【解析】根據(jù)給定數(shù)表求出樣本中心點,代入即可求得,取可求出該年進口總額.【詳解】由數(shù)表得:,,因此,回歸直線過點,由,解得,此時,,當時,即,解得,所以,預計該年進口總額為千億元.故答案為:1.6;3.6515、【解析】根據(jù)題意由a-c=439+6371,a+c=2384+6371,求得2a即可.【詳解】設橢圓的長半軸長為a,半焦距為c,由題意得:a-c=439+6371,a+c=2384+6371,兩式相加得:2a=15565,因為橢圓上任意兩點間的距離的最大值為長軸長2a,所以衛(wèi)星運行軌道是上任意兩點間的距離的最大值為,故答案為:1556516、(1)證明見解析,;(2)答案見解析.【解析】(1)利用得出的遞推關系,變形后可證明是等比數(shù)列,由等比數(shù)列通項公式得,然后再除以得到新數(shù)列是等差數(shù)列,從而可求得;(2)選①,直接求出,用錯位相減法求和;選②,求出,用分組(并項)求和法求和;選③,求出,用裂項相消法求和【詳解】解:(1)當時,因為,所以,兩式相減得,.所以.當時,因為,所以,又,故,于是,所以是以4為首項2為公比的等比數(shù)列.所以,兩邊除以得,.又,所以是以2為首項1為公差的等差數(shù)列.所以,即.(2)若選①:,即.因為,所以.兩式相減得,所以.若選②:,即.所以.若選③:,即.所以.【點睛】本題考查求等差數(shù)列、等比數(shù)列的通項公式,錯位相減法求和.數(shù)列求和的常用方法:設數(shù)列是等差數(shù)列,是等比數(shù)列,(1)公式法:等差數(shù)列或等比數(shù)列的求和直接應用公式求和;(2)錯位相減法:數(shù)列的前項和應用錯位相減法;(3)裂項相消法;數(shù)列(為常數(shù),)的前項和用裂項相消法;(4)分組(并項)求和法:數(shù)列用分組求和法,如果數(shù)列中的項出現(xiàn)正負相間等特征時可能用并項求和法;(5)倒序相加法:滿足(為常數(shù))的數(shù)列,需用倒序相加法求和三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)=0.3x-0.4;(2)正相關;(3)1.7(千元).【解析】(1)由題意得到n=10,求得,進而求得,寫出回歸方程;.(2)由判斷;(3)將x=7代入回歸方程求解.【詳解】(1)由題意知n=10,,則,所以所求回歸方程為=0.3x-0.4.(2)因為,所以變量y的值隨x的值增加而增加,故x與y之間是正相關.(3)將x=7代入回歸方程可以預測該家庭的月儲蓄為=0.3×7-0.4=1.7(千元).18、(1)或;(2)5.【解析】(1)設的公比為q,解方程即得解;(2)分兩種情況解方程即得解.【小問1詳解】解:設的公比為q,由題設得由已知得,解得(舍去),或故或【小問2詳解】解:若,則由,得,解得若,則由,得,因為,所以此方程沒有正整數(shù)解綜上,19、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由題意求得數(shù)列的公差后可得通項公式.(Ⅱ)結合條件可得,分和兩種情況去掉中的絕對值后,利用數(shù)列的前n項和公式求解試題解析:(Ⅰ)∵成等比數(shù)列,∴,整理得,解得或,當時,;當時,所以或(Ⅱ)設數(shù)列前項和為,∵,∴,當時,,∴;當時,綜上20、(1);(2)【解析】(1)由焦點坐標可求c值,a值,然后可求出b的值.進而求出橢圓C的標準方程(2)先求出直線方程然后與橢圓方程聯(lián)立利用韋達定理及弦長公式求出|AB|的長度【詳解】解:⑴由,長軸長為6得:所以∴橢圓方程為⑵設,由⑴可知橢圓方程為①,∵直線AB的方程為②把②代入①得化簡并整理得所以又【點睛】本題考查橢圓的方程和性質,考查韋達定理及弦長公式的應用,考查運算能力,屬于中檔題21、(1)答案見詳解(2),證明見解析【解析】(1)求導得,,分類討論參數(shù)a的范圍即可判斷單調區(qū)間;(2)設,,聯(lián)立整理得,構造得,構造函數(shù),結合導數(shù)判斷單調性,進而得證.小問1詳解】由,,可得,當時,,所以在上單調遞增;當時,令,得,令,得所以在單調遞減,在單調遞增;【小問2詳解】證明:因為函數(shù)有兩個零點,由(1)得,此時的遞增區(qū)間為,遞減區(qū)間為,有極小值.所以,可得,所以.由(1)可得的極小值點為,則不妨設.設,,則則,即,整理得,所以,設,則,所以在上單調遞減,所以,所以,即.22、(1)(2)【解析】(1)根據(jù)拋物線的定義可得軌跡方程;(2)聯(lián)立直線與拋物線方程,利用根與系數(shù)關系結合均值不等式可得最小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論